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ABSTRACT

In this dissertation, an averaged-Lagrangian method is developed

for obtaining the equations which describe the nonlinear interactions

of the wave (oscillatory) and background (non-oscillatory) components

which comprise a continuous medium. The method applies to monochromatic

waves in any continuous medium that can be described by a Lagrangian

density, but it is demonstrated here in the context of plasma physics,

where the analysis of nonlinear wave interactions by other methods can

be extremely complicated.

The basic approach is that used by Whitham in 1965. It is a per­

turbation approach, restricted to cases where the perturbation compo­

nents are small enough that their nonlinear interactions are weak, and

the wave amplitudes are only perturbed slowly in space and time. Here,

the theory is presented in a more general and unified form by way of a

new averaged-Lagrangian formalism which simplifies the perturbation

ordering procedure. Earlier theory is extended to deal with a medium

distributed in velocity space and to account for the interaction of the

background with the waves. The analytic steps are systematized, so as

to maximize calculational efficiency.

The method makes direct use of the Lagrangian density and the small­

signal relations for the wave parameters, as opposed to the conventional

iterative approach, which employs only the nonlinear equations of motion.

The method also differs from the quantum mechanical approach, in which a

Hamiltonian description is used, and the waves are treated as quasi­

particles. For complicated media, the latter approach has come into use

as a convenient substitute for the conventional approach, even though the

problem is essentially classical. The averaged-Lagrangian method is a

Preceding page blank I
iii





1.

2.

CONTENTS

INTRODUCTION

CONVENTIONAL THEORY AND BASIC CONCEPTS OF NONLINEAR WAVE
INTERACTION • • . • • . . . • . . . • •

2.1 Perturbation Expansion of the Nonlinear Equations

1

7

7

2.2 Linear Theory 10

2.3 The Nonlinear Interaction Picture

2.4 Nonlinear Wave Analysis.

13

16

2.4.1
2.4.2
2.4.3
2.4.4

Three-Wave Interactions .•.
Higher Orders of Interaction and Virtual Waves
The Manley-Rowe Relations ••
Explosive Instability.

16
23
25
28

2.5 Nonlinear Background Analysis

2.6 Scope and Complexity of the Conventional Approach.

31

34

2.6.1
2.6.2

Scope of Application ..
Algebraic Complexity •

3. THE AVERAGED-LAGRANGIAN APPROACH TO NONLINEAR WAVE
INTERACTIONS • • . • • . . . . • • • . • • • . • • 36

The Lagrangian Formalism.3.1

3.1.1
3.1.2
3.1.3
3.1.4

Conservation of Generalized Energy
Construction of the Lagrangian Density
Expansion of the Lagrangian.
Choice of Reference State •.••••••

37

39
40
43
46

3.2 The Lagrangian Mechanics of Wave Interaction.

3.3 The Averaged-Lagrangian Appoach •••.••••

3.3.1
3.3.2
3.3.3

Restricted Variation of a Perturbation Component
The Dual Expansion of £. . .•.
Expansion in E

50

50
52
59

3.4 Background Analysis • • 61

3.5 Wave Analysis ..•

3.5.1
3.5.2

Amplitude Variation.
Phase Variation .•.

v



4.

CONTENTS (Cont.)

3.5.3 Higher Order Nonlinear Effects .•

3.6 Outline of the Averaged-Lagrangian Method •

APPLICATIONS

4.1 Ion-acoustic Waves in a Plasma.

Page

70

75

82

82

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

Formal Lagrangian Description.
Equations of Background Evolution.
Equations of Wave Evolution ••
Solution Procedure . • . • • .
Interpretation of the Solution
Discussion . . • • • • • . . • •

83
87
88
89
93
98

4.2 Electrostatic Waves in a Vlasov Plasma •• 99

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

The Plasma • • . . • • . • • • .
The Plasma Lagrangian •••
The Perturbed Distribution Function.
The Problem. • • • • •
Wave Analysis ••.•..••
Background Analysis•...
The Interaction Equations .•
Weak Turbulence .•
Discussion . • . • . • • .

99
101
105
107
109
112
113
115
120

5. APPLICABILITY AND CAPABILITIES OF THE AVERAGED-LAGRANGIAN
APPROACH • • • • • . . • . . • • • . • • • . • • • . . .

5.1 Basic Assumptions of the Averaged-Lagrangian Theory

5.2 The Effects of Boundaries .•

5.3 Formulation of the Lagrangian ••

123

123

124

127

5.4 Other Variational Principles •••

5.3.1 The Physical Approach to the Variational
Formulation. • . . • • • • •••

5.3.2 The Mathematical Approach to the Variational
Formulation .•••.••

5.5

5.6

Plasma Lagrangians.

Capabilities of the Averaged-Lagrangian Method.

vi

128

140



CONTENTS (Cont.)

6. CONCLUSIONS ..••.•••.•

6.1 Original Contributions of the Work.

6.2 Future Applications of the Method.

REFERENCES•..•..••..

vii

Page

144

144

146

148



I LLUSTRATIONS

Figure

1.1

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

Primary area of investigation, and overlapping
subjects . . . . • . . . . . •

Lowest order wave-wave and wave-background inter-
action processes • .. .• • • • • . . . • • •

Synchronism between three waves which propagate in
the same mode. •.•••••..•.•

Flow chart for the nonlinear wave analysis

Flow chart for the nonlinear background analysis

Analogous electrical and mechanical networks . •

Perturbation expansion of the Lagrangian density, and
the nonlinear equations of motion. •. . ...

Perturbation expansion of the averaged Lagrangian
density, and the interaction equations •••..

Flow chart for the averaged-Lagrangian analysis •••

Solution, in Case A, for three coupled ion-acoustic
waves, propagating away from a constant, planar,
source . .. . . . . . . . . . . . . .

2

15

18

22

33

42

55

76

95

4.2 Solution, in Case B, for three coupled ion-acoustic
waves, propagating away from a constant, planar,
source.. • 95

4.3

4.4

Definition of the displacement variable, 6(V,X,T).
~ ~ ~

The quantum interpretation of three plasma processes
described by the wave and background kinetic equations

viii

102



Symbol

LIST OF SYMBOLS

Page where defined
on first use

(1) Latin Alphabet

Aijk ...

A'll

B

B-
c

i
c'll

D
s

E

E-
[E-L]

[E-L-S]

e

-e

F

coefficient matrix defined by (2.18)

vector potential .

normalized scalar parameter of Wave 'll

function which determines adjoint boundary

conditions, via (5.16)

magnetic induction

capacitance

mode structure coefficient, defined by

(2.23) ....

quasilinear diffusion coefficient for

species s

linear dispersion function of (m'll'~'ll);

particle or quasiparticle energy

electric field . . . .

expressions defined by (5.3)

expressions defined by (5.4)

generalized energy density in phase space,

defined by (3.6) .

charge of an electron

normalized, dimensionless, distribution

function . . . . .

generalized energy flux density in phase

space, defined by (3.7)

ix

12

100

66

134

9

41

13

114

12

29

9

125

125

39

9

100

39



Symbol

f

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

particle distribution function in

G

g

..gj

H-
I

J

K

K(m)

K'Tl

~'Tl

L

L

M.
J

M

M

phase space

an arbitrary function of the [qi}, ~, ~,

and t

an arbitrary function of x

generalized force on body j (ith component

= g~) .
J

magnetic field

current

action integral, defined by (5.61)

Jacobian, defined by (4.75)

Boltzmann's constant

quarter period of sn(~,m)

normalized, dimensionless, wavenumber of

Wave 'T1 • •

wavevector of Wave 'Tl, defined by (2.16)

total Lagrangian •

inductance

Lagrangian density, defined by (3.2)

mass element j in mechanical network

ion mass . •

normalized, dimensionless particle mass

constants defined by (4.43)

complete set of M nonlinear partial

differential equations in M variables

x

9

13

40

100

41

103

83

93

110

11

37

41

37

41

83

100

92

127



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

set of nonlinear partial differential equa-

tions, involving supplementary variables .. 136

m

set of constraint equations

electron mass

reference particle mass

135

9

100

N
s

n

P

P

Q

q

qt
i

q

R

normalized, dimensionless, number density of

particle species s . •

action density of Wave ~, defined by (4.44).

constants defined by (4.47)

particle number density

a unit vector at a point on a closed

surface S, which points normally outward

from the enclosed region, R

electron scalar pressure . .

particle or quasiparticle momentum

power input to Mode ~

one of the set of scalar variables

[pi: i=l, ...M}

charge variable used in Lagrangian

description of a reactive circuit

a scalar variable

the adjoint variable, corresponding to q

one of the set of scalar variables

[qi:i=l, ...M}

a bounded region in space

xi

100

89

92

83

126

83

119

26

127

41

133

7

125



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

Rayleigh dissipation function

S

S

sl1

T

T

T.
J

t

u

position vector

surface which encloses a region R in

space

spring constant, in Hook's Law

one of the set [Si:i=l, .•.M}, which are

given functions of ~, ~, and t

sign factor, of value ±l, used in (2.27)

normalized, dimensionless, time coordinate.

temperature

kinetic energy of element j in a system

of discrete elements .

kinetic energy density

time coordinate

velocity-dependent scalar potential

defined by (3.10)

141

125

41

7

17

100

82

41

41

8

40

U(n) potential energy density gained from work

done against electron pressure, defined in 84

11

v

v-..

v-
v.....

potential energy density

voltage

normalized, dimensionless, velocity

coordinate vector

velocity coordinate vector (in statistical

description) . . .

perturbed particle velocity (in hydro-

dynamic description). .

xii

41

41

100

9

83



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

x-
z

z
p

r

.
~

6 (X)

E

the group velocity of Wave ~ (=dmr(d~~)

normalized, dimensionless, position

coordinate vector

position coordinate vector

scalar position coordinate

spatial period of three-wave interactions

in examples of Section 4.1 .

(2) Greek Alphabet

constant defined by (4.42) ....

adiabatic compressional constant,

defined by (4.6) ..

positional component of a cell displacement

in phase space, defined (4.71)

velocity component of a cell displacement

in phase space, defined by (4.71)-(4.72)

Dirac delta function of the scalar

quantity X .....

I
smal~ dimensionless parameter which

I
characterizes slow-scale changes in

20

100

9

83

96

91

84

101

101

12

position and time 8

EO permittivity of free space 9

E~
averaged generalized energy density of

Wave ~ . . . . . . . . . . . . . . . 27

displacement of mass in mechanical

network . . . . . . . . . . . . . . . . . 41

xiii



Symbol

C(z)

LIST OF SYMBOLS (Cont.)

particle displacement from equilibrium

position z ...•..

complex phase angle of Wave ~

phase mismatch, defined by (3.38) ..

a constant of proportionality in (2.28)

Page where defined
on first use

83

11

58

19

A~,A expansion coefficients defined by
'I -~'Y •. '

(3.35)-(3.37) . 57

A~ ;
'I,n

A
-~ ..• ,n

terms in the secondary expansions of

A~.and A , which are of order
'I -~ •••

[q~} . . . . . .

n in the

59

dT

i
integer denoting the order of qo in

powers of E, in accordance with (3.47)

sign (E~), the energy parity of Wave ~ •

differential volume element

normalized, dimensionless, electric

scalar potential . . . • .

phase angle corresponding to A~,

defined by (4.28)

slow-scale component of e~

averaged energy flux density of Wave ~

electric scalar potential

three-wave coupling coefficient, defined

by (3.57)

four-wave coupling coefficient, defined

by (4.103) ....

xiv

61

29

83

100

89

11

27

9

66

111



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

b

i, j, ...

s

v

w

0:,13,1,·' .

any well-behaved function of ~ , which

is zero in the limit I~I - ro and which

satisfies (2.10) ..

normalized, dimensionless, angular

frequency of Wave ~

normalized, dimensionless frequency

shift of Wave ~, defined by (4.102)

angular frequency of Wave ~ , defined

by (2.16)

a four-vector, defined by (2.22)

(3) Superscripts

denotes function of background perturbation

variables

indices, corresponding to scalar variables

qi, qj, etc. (i,j, .••=l, .•• ,M) •••••

denotes positional components of vector

in phase space .

denotes velocity components of vector in

phase space

denotes function of wave perturbation

variables

denote functions of quantities of Wave 0: ,

Wave 13 , Wave 1 , etc.

10

110

111

11

12

54

7

39

39

53

11

(1+0 ) denotes a function of virtual wave quantities

with frequency and wavevector (ru/+ffi6'~+~6). 24

index, denoting a function of quantities

12

xv



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

indices, denoting functions of

bation variables [qi} or [qi},
I..l \)

respectively (I..l,\)=o,a,~,... ) .

pertur-

48

overhead

overhead

a

e

i

i, j , ...

j ,k

(m)

denotes a complex wave amplitude, defined

by (2.15 ) . . . . . . . . . . . . . .
denotes a complex wave component, defined

by (2.15 ) . . . . . . . . . .
(4) Subscripts

index, denoting basis frequency (a=l, .•.J)

denotes parameter of electron(s) .....

denotes imaginary part of a complex quantity

indices, corresponding to scalar variables
i j

q ,q ,etc. . ....

indices, denoting components along Cartesian

axes (j,k=l,2,3) ..•

index, denoting branch of dispersion

relation (-&=1, ..•M)

index of perturbation expansion, which denotes

term of order m in powers of the [qi)

11

11

26

82

11

7

37

12

44

m,n

p

indices of dual perturbation expansion, which

denote term of order m in powers of wave

components [qi) and order n in powers of
w .

background components [q~) 52

denotes perturbed quantity

p

r

denotes one of a set of primary variables

denotes reference state quantity. .

xvi

127

43



Symbol

LIST OF SYMBOLS (Cont.)

Page where defined
on first use

r

s

s

w

a,~,)', ...

( ),+0 )

o

o

A
Op

Aij ...
Op

(%t)~ ,
(~25)~

(~)~

denotes real part of a complex

quanti ty ..

denotes parameter of particle species s

denotes one of a set of supplementary

variables

denotes wave component

denote quantities of Wave a, Wave ~,

Wave )', etc. . . .

denotes a quantity of virtual wave, with

frequency and wavevector (ro)'+mo'~+~o)

denotes perturbation quantity

index, denoting quantity of Wave ~

(~=a,~, ... )

indices; denoting wave or background

components (~,~=o,a,~, ... ) .....

denotes slow-scale background component

denotes parameter of equilibrium state

denotes a vector . .

(5) Operators

nonlinear differential operator

differential operator matrices .

differential operators which act only

on quantities of Wave ~

operator defined by (3.58) .

xvii

11

99

. 128

16

24

11

48

11

83

9

132

7

19

66



Symbol

i i
F.,G., •••

J J

6

'V
v

overhead

overhead

LIST OF SYMBOLS (Cont.)

operator defined by (3.61) ..

linear differential operators, with

argument of qj . . . • . • . .

delta variation of Hamilton's principle

restricted delta variation of averaged

Hamilton's principle

integration over velocity coordinates

limited space-time average .

xviii

Page where defined
on first use

67

7

37

51

100

100

G3

13



ACKNOWLEDGMENTS

The author wishes to express his appreciation to Professor F. W.

Crawford, for the suggestions which initiated this investigation, for

guidance throughout the course of the work, and for valuable suggestions

on the preparation of the manuscript. It was a pleasure to collaborate

with Professor Crawford on an earlier paper on this subject.

Thanks and credit are also due to other members of the Stanford

University faculty and research staff, in particular to: Dr. K. J.

Harker, Dr. K. B. Dysthe, Dr. H. Kim, Professor P. A. Sturrock, and

Professor O. Buneman. During all stages of the investigation, Dr. Harker

has enthusiastically shared his considerable knowledge of mathematical

techniques and plasma wave theory. He has also provided critical com­

mentary on this and other manuscripts. Dr. Dysthe was in close contact

with the author during the initial stages of the investigation, which he

assisted through many helpful conversations on the subject of Lagrangian

analysis and fluid dynamics. Dr. Kim furthered the progress of the work

while he was still a graduate student. He did so through many helpful

discussions, and through his work on the Low Lagrangian, which appeared

in a paper by himself and this author. Professor Sturrock is to be

thanked for reading the manuscript, and for his commentary on certain

aspects of the preceding work. Because of Professor Sturrock's previous

experience in the application of Lagrangian and Hamiltonian methods to

nonlinear wave analysis, his comments were very helpful. Professor

Buneman is to be thanked for a useful discussion of his stream-model

Lagrangian for a plasma.

The author wishes to acknowledge the contributions of fellow stu­

dents, Mr. J. M. Larsen and Mr. Y. Pengo They are greatly appreciated.

Mr. Larsen offered helpful observations during the course of his own

work, in which he applied the averaged-Lagrangian theory to an experi­

ment. Mr. Peng discussed his own work on Lagrangian formulations for

plasmas and for systems of nonlinear partial differential equations.

He also pointed out many publications which pertain to those subjects.

xix



Finally, the author wishes to express his appreciation to his wife,

Martha, for her continued understanding and devotion during the writing

of this dissertation and the long period of study which preceded it.

xx



1. INTRODUCTION

This investigation concerns the weak nonlinear effects of waves,

in a continuous medium which can be described by a Lagrangian. In the

limit considered here, the nonlinearity of the descriptive equations

results in weak interactions of the small-signal waves with one another

and with the background state, which is defined by the non-oscillatory

parameters of the medium. The weak interaction perturbs both the wave

and background parameters on a scale which is large in comparison with

the wave periods. The primary result of this investigation is an effi­

cient and conceptually useful method for obtaining the equations which

describe this behavior. The method makes direct use of the Lagrangian,

as opposed to conventional iterative methods, which employ the corres­

ponding equations of motion. The theory is an extended version of that

presented by Whitham in 1965.1- 3

The studies to be described were motivated by problems of current

interest in plasma physics, for which the conventional nonlinear analysis

is often extremely complicated. The work contributes to plasma physics

through applications of the Lagrangian method to specific plasma examples.

These examples illustrate characteristic features of the various plasma

Lagrangians, and serve to demonstrate the efficacy of the method. How­

ever, the method itself is not restricted to the plasma medium. There

is current interest in nonlinear wave phenomena in many other areas where

Lagrangian techniques may be applied, so in the development of the method

the author has taken pains to maintain generality. In the context of

physics and mathematics, the content of this study lies primarily in a

region of intersection between three disciplines, as indicated by the

shaded area in the Venn diagram of Fig. 1.1. The disciplines are

(a) the study of nonlinear wave interactions, for which this work develops

a useful analytic tool, (b) the mathematics of variational methods, of

which Lagrangian mechanics is a part, and (c) plasma physics, to which

the method may be usefully applied. To some degree, topics outside the

region of intersection are touched upon in this investigation, since some

general understanding of all three fields is helpful in understanding

and evaluating the method presented here.

1



Fig. 1.1 Primary area of investigation, and overlapping
subjects. The primary area of investigation is shaded.
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Interest in the nonlinear interaction of oscillatory modes has its

academic origin in the study of simple mechanical systems, such as coupled

pendula, but further interest has been stimulated by electrical devices

since the 19th century, when Faraday and Rayleigh demonstrated nonlinear

interaction in materials which have a variable reactance. Practical

application of nonlinear effects began in this century with the develop­

ment of various traveling wave devices. Since the 1950's, parametric

amplifiers have been used at microwave frequencies because of their low

noise properties. Coupled-mode theory explains the behavior of these

devices, and it is also the most effective means of explaining the behav­

ior of the traveling wave tube (TWT) developed in the 1950's as a high

power, high frequency amplifier. These applications of coupled-mode

theory are discussed in a book by Louisell (1960),4 which contains an

extensive bibliography on the subject. The development of the laser has

stimulated interest in the nonlinear interaction of coherent light waves,

and in new devices at optical frequencies, such as tunable parametric

oscillators. 5 Some general topics in nonlinear optics are reviewed in a
6monograph by Bloembergen. The study of acoustic waves in solids at

microwave frequencies has led in the last decade to the development of

practical microwave delay lines, and the acoustoelectric effect, first

demonstrated by D. L. White and others7,8 has spurred developmental

efforts on acoustic traveling wave amplifiers. More recently, efforts

have been made toward the study and exploitation of the nonlinear effects

of these waves. 9 ,10

In plasma physics, the study of nonlinear phenomena has progressed

somewhat differently, since the plasma medium is noisy, and has not

proved to be well suited to the construction of electronic devices, such

as amplifiers, frequency converters, etc. Nonlinear plasma theory now

deals with plasma turbulence, especially in relation to controlled thermo­

nuclear fusion devices and astrophysical phenomena. It is also concerned

with the heating of the ionosphere by monochromatic waves, and with the

scattering of waves by density fluctuations in the ionosphere. Applica­

tions of nonlinear theory to plasma turbulence are discussed, for example,
11 12

in monographs by Kadomtsev and Vedenov.

3



variation of a wavetrain due to weak nonlinear effects.

a relativistically covariant formalism, and

applied a classical version of the method.

In plasma theory, the analysis of nonlinear wave phenomena is

extremely complicated, except for certain idealized problems .12-14

Interesting problems have been solved by conventional methods (see

texts by Sagdeev and Galeev,13 and Davidson
14

), but various other

approaches have also been employed. Their object has been to improve

insight and to reduce analytic complexity. For instance, Sturrock has

found it illuminating to treat the interaction of monochromatic waves

h '1' d . 1 . bl 15,16by use of t e Ham~ ton~an an act~on-ang e var~a es.

More recently, it has become popular to treat interactions between

the wave spectra and the plasma particles in a random-phase approxima­

tion by methods borrowed from quantum mechanics. Such work has been

reviewed by Harris. 17 One disadvantage of that approach is the intro­

duction of a complicated quantum mechanical formalism to solve problems

which are essentially classical, e.g., weak plasma turbulence. Another

is that the quantum mechanical approach is directed toward the analysis

of wave spectra, whereas in electronics, optics, and ionospheric plasma

studies, one is more often interested in describing the behavior of

monochromatic waves. Tsytovich
18

has recently introduced a semi-quantum

mechanical approach, which is classically based, but which relies on the

analogy with the quantum concept of induced processes. His approach

makes it easier to understand and work with the interaction equations,

whereas the Lagrangian method developed here is intended to make it

easier to derive the equations themselves.

Early use of Lagrangian methods in the study of nonlinear wave

behavior was made by Sturrock,19 and interest in them was further stimu­

lated by Whitham's articles. 1- 3 Whitham used an approximate form of

Hamilton's principle to obtain the equations for the slow amplitude

The method
20has since been considerably extended and refined by others. Dougherty

extended it to deal with the nonlinear interaction of wavetrains, using
21

Dysthe has presented and

Early applications of

Lagrangian methods to nonlinear wave interactions in plasmas were made
. 22-24 25by this author in collaboration with Crawford and K~m, by Dougherty,

4



26and by Dewar. These papers all provide useful techniques for the

analysis of nonlinear wave evolution in the systematic manner to be

presented here.

The present investigation is most closely related to the approach

of Dysthe, but goes beyond Lagrangian schemes developed by him and the

other investigators in several respects: (a) the analysis accounts

simultaneously for wave-wave and wave-background interaction in a uni­

fied manner; (b) the analysis allows for the use of velocity as a

coordinate, which is essential for applications to plasma problems in

which the Lagrangian involves a velocity distribution function; and

(c) the analytic steps constitute a method which maximizes the calcula­

tional efficiency.

In Section 2, the iterative approach to nonlinear wave analysis is

outlined. This serves to introduce the general characteristics of non­

linear phenomena, and to provide a standard with which the Lagrangian

approach may be compared.

Section 3 reviews the basic concepts of Lagrangian mechanics, as

they apply to a continuous medium. Assuming small perturbations from a

slowly-varying reference state, it shows how Hamilton's principle may be

specialized to generate a Lagrangian mechanics for interacting modes.

A specialized Lagrangian formalism is developed for this purpose, and

the analysis results in a Lagrangian method for obtaining the equations

for wave and background evolution, in the weak-coupling limit. The

section concludes with an outline and flow chart for the method, and a

summary of the assumptions upon which the method is based.

In Section 4, the method is applied to two illustrative examples in

plasma physics. In the first example, it yields the interaction equa­

tions for three ion-acoustic waves and the plasma in which they propa­

gate. The second example deals with three and four waves in a Vlasov

plasma, and employs a quasistatic approximation to the electromagnetic

behavior. For this problem, the method is applied to a Lagrangian for

the Vlasov plasma which is commonly referred to as the Low Lagrangian,27

although, as we shall show in Section 4, an essentially equivalent result

was developed and applied independently by Sturrock. A rigorous

5



interpretation of this plasma Lagrangian has been given by Galloway

and Kim,24 who employed it in an earlier Lagrangian method for obtaining

wave coupling coefficients. The Lagrangian method itself yields only

the interaction equations, but Section 4 also discusses solution pro­

cedures in connection with the plasma examples. The basic solution

procedures are not new; they are presented merely to show how the

analytic process may be carried through to a finish, when the Lagrangian

approach is used at the start. This generally involves working with a

different set of coordinates from those used in a conventional analysis.

In general, solutions for nonlinear interaction equations are not known

analytically, and in the examples, additional assumptions are introduced

in order to put the equations into forms for which solutions are known.

In the first example, a solution for the ion-acoustic wave and plasma

parameters is stated in terms of Jacobian elliptic functions. In the

second example, the random-phase approximation is applied to yield

equations for a Vlasov plasma in the presence of a wave spectrum. The

interaction equations are shown to be equivalent to the kinetic equations

for wave and particle evolution, as they are used in weak turublence

theory. Proof of this equivalence involves a transformation from the

displacement variables, used by Low, to the parameters of the conventional

Vlasov description.

Section 5 is concerned with the applicability of the method, and

with possible extensions of the averaged-Lagrangian approach. Related

topics in the mathematics of variational methods are discussed.

Section 6 concludes the dissertation with a review of the original

contributions of the work, and an assessment of the future utility of

the averaged-Lagrangian approach, within and outside the field of plasma

physics.

6



2. CONVENTIONAL THEORY AND BASIC CONCEPTS

OF NONLINEAR WAVE INTERACTION

The conventional approach to nonlinear wave interactions is to work

directly with the equations of motion which govern small perturbations

from some reference state. In this section, various assumptions are

made which simplify the analysis. The Lagrangian analysis of the next

section is far less restrictive, but such generality is not needed here.

This section is illustrative of the conventional approach, not definitive.

A very detailed conventional analysis of nonlinear plasma phenomena may

be found in a recent text by Davidson,14 and Louisel1 4 has written a

basic reference work on nonlinear interactions in a wider class of media.

2.1 Perturbation Expansion of the Nonlinear Equations

Here we shall consider a general continuous medium, of which a

plasma may be an example. The medium is described by M scalar variables

[qi: i= l, ..• ,M} which represent the perturbations from the reference

state. The coordinates of the system are ~,~, and t , where sub­

scripts 1, 2, and 3 will be used to denote the orthogonal scalar compo-

nents of v and x We shall stipulate that for this medium the

descriptive equations for the perturbations may be written in the dif­

ferential form

o , (2.1 )

where summation over repeated subscripts is implied in this notation,

Si is a function of the coordinates only, and the elements of the

matrices A
ijk

••. are composed of sums and products of linear differen-
Op

tia1 operators, such as d/dt or d/dX1 ' each acting on a particular

component. Thus A
ijk

•.. may consist of a product of operators
i i Op

GjHk... where a subscript j on a particular factor indicates that

it operates only on the scalar variable qj Let F~ denote anyone

of these operator-factors; F~ must be linear in the ~ense that, if qj

7



is broken into components and

(2.2 )

A
ijk ... j k
Op qq ...

such term is

Although these factors are linear, the terms of

are nonlinear in general. For example, one

Aill 1 1 (1 < i <m) LetOp q q --

then

1
q

1 1
%: + qf3 ,

Aill 1 1
Op q q

(2.4)

This argument applies to all but the first two terms on the left-hand

side of (2.1). Those two terms are always linear. In general, the

Si d h Aijk ... b 1'· 1source term, an t e operators, Op , may e exp 1C1t y

dependent on ~' ~ and t In this entire work, the x and t

dependence is required to be on a slow scale, as opposed to the scale

of fluctuations to be found in the solutions for the waves. The slow

scale dependence will be indicated by a single dimensionless parameter
. i ( ) d Aijk ..• () . 1E , as 1n S ~,E~,Et an Op ~,E~,Et By carrY1ng a ong

the parameter E in this way it is possible to see the effects of the

separation in scales at any point in the analysis. One simply considers

the limit E -> 0 The use of E facilitates the relative ordering of

terms in the equations. For example

_d Si i
~ E Sdt

8
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or, in another useful notation,

(2.6 )

where translates" is proportionately of the same order as," and

O(Si) denotes the order of Si in powers of s.

The implications of the ordering scheme will emerge through usage

in this investigation. They will not be explored separately, because

this sort of procedure is fairly common in the literature. The reader

is referred to other sources27,28 for a more detailed exposition.

Equations of the form (2.1) are capable of describing a rather large

class of media. The truth of this assertion is to be found in the many

interesting problems of this type which have been studied in the litera­

ture. A plasma example will serve to show the versatility of the formal­

ism. Consider the Maxwe11-V1asov equations for an electron plasma with

slow scale inhomogeneity. We shall make the quasistatic approximation,

in which

oox X E o E B ~O ,

where E is the electric field, ~ is the scalar potential, and B is

the magnetic field, which is approximated by a given static component,

~O Rationalized MKS units are used here. Under the above approxi­

mation, the descriptive equations are

and

o ~ e f 3
~ . qs = EO f d v

o (2.8 )

in which f(~,~,t) is the distribution function; -e is the charge of

the electron; m is its mass; and EO is the permittivity of free

space. One of these equations, (2.9), does not have the form of (2.1)

9



because it involves an integral operation on f However, it may be

converted to differential form through the use of a dummy function ~(~)

This is a well-behaved function of v which is zero at I~I -+00 and

which is arbitrary otherwise except that

~~(~)d3v = 1

Using ~ , we may rewrite (2.9) as

~~
d
~

e
f] d3v 0

~ EO

(2.10)

(2.11)

and from this we may construct a more restrictive equation by setting

the integrand equal to zero:

o (2.12)

Equations (2.8) and (2.12) together constitute a complete set of differ­

ential equations of the form (2.1), but they are more restrictive than

the original set. However, once they are solved, the solutions to the

original problem may be recovered by integrating over the v coordinate

in such a way that (2.10) may be used to eliminate the dummy functions.

Such a technique is used in a plasma example of Section 4, where the

solution is found by a Lagrangian method. Our objective, both here and

in the Lagrangian approach, is to simplify the formal analysis by casting

the equations of motion into a differential form.

2.2 Linear Theory

Hereafter in this section, we shall consider only static, spatially

homogeneous reference states. This is done for simplicity of presenta­

tion; weak spatial and temporal inhomogeneity are accounted for in the

Lagrangian analysis of Section 3.

In the limit of small perturbations, all but the first two terms on

the left hand side of (2.1) may be ignored, so that we have a system of

10



linear inhomogeneous differential equations,

If the perturbations are somewhat larger, the first few nonlinear terms

in (2.1) will still be small, but they may not be negligible. Then the

solutions to (2.13) will merely approximate the solution to the complete

equations. We are interested only in systems which have small-signal

solutions in the form of propagating waves, so that we may expand the

as

i
q (2.14)

These are expressed in the following complex

constitute a particular solution to (2.13), and the

which are solutions to the related homogeneous

where the
i

(q~} are wave components

problem (A
ij

qj = 0)
Op ~

notation:

qi == qi
~ ~

*e --e
-~ ~

(2.15)

The quantity e (x,t) is the oscillatory phase of the wave and its
~ ~

first derivatives are

m == de /dt
~ ~

k == -de /2lx
~1') ~ ~

(2.16)

is in fact just (m t - k . x + ~'),
~ ~~ ~ 1')

the solutions to the

In a spatially homogeneous medium, e
~

where m , k and ~' are all constants. Since
~ ~~ 1') .... i .... i*

problem are to be real, we must have q-1') = q1')

The substitution of (2.14) into the linear equations of motion

yields

o (i,j 1, ...M) (2.17)

11



In this equation,

which we define by

is one of a set of matrices

( ijk ... ( k k )}A wp. ,w ' ••• ';.:.A' ...
I-' 11-' ~1

(2.18 )

Aj Ak dwhere the complex amplitudes qr3,q1 ,etc., are regarde as constants.

Equation (2.17) is one frequency component of (2.13). It is a secular

equation and as such it has solutions

q = {q exp je lo[w (k )]
T) T) T)~ T) ~T)

where W (k) is a solution of
T) T)

o (2.20 )

Equation (2.20) is the dispersion relation for the medium. The dis­

persion function, IAij I ,may in general be factored into M factors

DT)l(w ,k ).D
2
T)(w ,k ). D

3
T)(w ,k ) ... , and (2.20) is satisfied if anyoneT) ~T) T) ~T) T) ~T)

of these factors is zero. Each factor corresponds to a particular

eigenmode of the secular equation (2.17), and each represents a branch

of the dispersion relation

D;(W ,k ) = 0
l. T) ~T)

In this work, to specify a propagating wave component, T)

(2.21)

is to

specify a corresponding point (w ,k) on a particular branch. Then
1) ~T)

the index T) alone will serve to identify the branch, DT)(w, k )T) ~T)

Here, and in the rest of the work, we use (WT)' ~T)) to indicate a four-

vector

(w k) =(w k k k )T) '~T) T) , T)1' T)2' T)3
(2.22 )

The subscripts rand i will henceforth be used to denote the real

12



and imaginary parts, respectively, of e
Tj

After solving (2.21), one may substitute

M scalar equations relating the [qi}

small-signal relations

,CD ,
Tj

CDTj (~Tj )

These

k and (CD, k )
Tj Tj Tj
into (2.17) to obtain

are the normal-mode

i
c a

Tj Tj
(i l, ... ,m)

is chosen for each

CD ,k ,and
Tj ~Tj

Its algebraic form depends on the particu-

scalar field parameter, a
Tj

is a complex factor expressed in terms of

convenient
i

c
Tj

state parameters.

Here, one

wave, and

reference

lar dispersion branch considered.

2.3 The Nonlinear Interaction Picture

In the small-signal limit, the [q~} and [aTj} are all constant,

and the waves are uncoupled. If the wave amplitudes are gradually

increased, however, a condition will be reached in which appreciable,

but weak, coupling of the small-signal modes and the [q~} will occur.

This is the "weak-coupling limit." In this approximation we assume that

the [q~} and [aTj} may be slowly varying functions of EX and Et

In the nonlinear analysis to be described in Sections 2.4 - 2.5, the

equations will be simplified by means of the small-signal relations

[ "i i,,}between the wave components q = c a There are, however, no
Tj Tj Tj

corresponding relations for the slow-scale perturbation components;

[q~} ; so each of them will be treated separately.

Related to the description of the [q~}. is the concept of a lim-

ited space-time average for functions of [ql.} , "f,,~, and t Let

such a function be G(qi,"f,,~,t) We define G("f"E~,Et) to be an

average of G over intervals of ~ and t which are large compared to

the period of oscillation of the uncoupled small-signal waves, but short

compared to the intervals over which :significant wave perturbation can

occur. This is meaningful when the coupling is weak. If G is a slow-

scale function of EX , and Et then G and r; are equal. The

G will be spoken of as the "bar average of G". To illustrate the
. .* 2

averaging we shall consider the case in which G is (~ + ~ )

13



then G(V,Ex,Et)
~ ~

(2.15).

is in the notation of

We are now in a position to explain how the equations for the vari­

ous perturbation components are obtained in the weak-coupling limit.

The equation for a monochromatic wave component, a is obtained by

isolating from (2.1 ) all terms which vary as exp jBa The small­

signal relations are used to simplify the results to a single equation.

The equations for the (q~) ,on the other hand, are obtained by taking

the bar-average of (2.1).

In the nonlinear analysis, we shall find it useful to consider the

waves as perturbations from a "background state," which evolves on the

slow scale in space and time. This state, sometimes referred to simply

as the "background," is defined by the reference state and the slow­

scale perturbation components. Together, the waves and the background

define the state of the medium. We may state the relationships symboli­

cally as

Waves
~
l 1 1· IMedium = q =c if
I Tl TlTl

Background
~

+ lq~l + Reference State , (2.24 )

where, in this usage, "=" means "is defined by," and "+" means "together

with." The concept expressed in (2.24) has been employed previously by
20Dougherty.

The conceptual picture of weak nonlinear interaction is illustrated

in Fig. 2.1, which applies to the three-wave case. The waves interact

weakly with one another (wave-wave interaction) and with the background

(wave-background interaction). The waves affect one another through the

nonlinear terms of (2.1). The background state affects the waves,

because its parameters appear in the coefficients of the wave

The waves affect the background equations, which describe the

because products of wave perturbation components contribute to

equations.
1

(qO} ,

the bar-

average of (2.1). The wave-wave interaction can be significant, on the

slow scale, only when (ill) and (k} satisfy certain "synchronism
Tl Tl

conditions," to be explained in the next subsection.
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Fig. 2.1 Lowest order wave-wave and wave-background interaction

processes. Three synchronous waves interact with one
another, as indicated by the broken lines, and simul­
taneously, each wave individually affects the background
and vice-versa, as indicated by the solid lines. If the
waves are asynchronous, the wave-wave interaction is neg­
ligible, but the wave-background interactions persist.

For consistency with existing nomenclature, the joint effects

of three or more synchronous waves on the (q~} ,and vice-versa,

are referred to in this work as "nonlinear wave-background inter­

actions." This is to distinguish them from single-wave "quasi­

linear" effects, although not even the latter could exist if the

full equations of motion were linear. In plasma theory, both quasi­

linear and nonlinear wave-background interactions are commonly refer­

red to as "wave-particle interactions." This is because one important

background parameter which is affected by the interactions is the

particle distribution function, f(~,E~,Et) The more general
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"background" label is preferred in this work because (a) the theory

developed here is not restricted to plasmas; and (b) even in plasma

analyses, the theory may describe the evolution of the slow-scale

electric and magnetic field components, as well as the particle dis­

tribution functions.

2.4 Nonlinear Wave Analysis

2.4.1 Three-Wave Interactions

For illustrative purposes we now consider the three-wave inter­

actions, which are nonlinear effects of a low order. These interactions

are relatively simple, but the same analysis extends to more compli­

cated nonlinear effects. We transform the differential equations (2.1)

into algebraic equations by substituting into them the small-signal
./

forms of the solution, (2.15). This procedure is not strictly correct,

since we are now considering an amplitude regime where wave coupling is

The

and {k} should appear in the equations.
~11

ent for calculational purposes to ignore their derivatives for now.

significant, so that the slow space and time dependence of {a}, {w }
11 11

However, it will be expedi-

information lost can be recovered to the necessary extent by expansion

procedures, used later in this subsection.

In the case of three discrete waves, the index 11 takes on values

±a, ~, ±y Let the small signal-forms of the solutions be substituted

into the first three terms of (2.1). Then the (w ,k) component of thea.-...o:
result is

(2.25 )

sync
G:l3Y

The subscript "sync Oj3y", used in this equation, indicates that the right

hand side represents a sum over only those components whose frequencies

and wavevectors satisfy the three-wave synchronism conditions

(w ,k ). = ( wQ , tJ + (w ,k) ,a "'0: r I-' .1-' r I ~I r (2.26 )
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in which the subscript r denotes the real parts of the [(CD11'~~}.

Unless these conditions are met quite closely by some synchronous combi­

nations, ~Y, the right hand side of (2.25) is zero and we have only

the linear problem. We may modify (2.25), and the subsequent analysis,

to allow for the case in which there is a small synchronism mismatch, of

5CD in frequency and 5k in wavevector, provided that 15aYCD , ~ 15k/k I e,
~ ~ ~~

where ~ = a,~,Y .... However, for simplicity of illustration in this

section, we shall consider only the case in which synchronism holds

exactly. The effects of small synchronism mismatch are accounted for in

the Lagrangian analysis of Section 3.
The general form of the synchronism conditions for the interaction

of many waves is

~ s (CD ,k ) = (0,0)
~ ~ ~ ~~ r ~

(2.27)

where (s} is some set of sign factors having value ±l. Equation (2.27)
~

is a necessary, but not sufficient, condition for significant nonlinear

wave coupling. Even if it is satisfied, the strength of the coupling may

be negligible in a particular case. Figure (2.2) shows how the syn­

chronism conditions may be satisfied for three collinearly propagating

waves in the same mode. Clearly, for certain points on the dispersion

curve, synchronism with two other points may be impossible, and in fact,

for dispersion curves of certain common forms, such synchronism may be

impossib Ie throughout. ' One may wish to consider synchronism between

different branches, and to allow for k's at various angles with respect

to one another. This generally increases the possibilities for synchro­

nism. Because (2.27) is a necessary condition, a search for synchronous

combinations is usually the first step in the study of a particular wave

interaction problem, and some general discussions may be found in the

11.'terature. ll ,30 H 'th t k h 11owever, l.n e presen wor we s a concentrate on

rather general methods for finding the equations for the coupled modes,

after assuming that synchronism obtains in some sense.
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Fig. 2.2 Synchronism between three waves which propagate in the same

mode. The figure shows a dispersion curve for waves which

propagate along a common spatial axis with real frequencies

and wavenumbers. Each wave is represented by two points on

the dispersion curve, (WT]' kT])' and

W-"1=-WT]' and k..T)=-k"1 (T]=a, 13'/)·

necessary for significant wave-wave

(W ,k ), where
-T] -T]

The synchronism condition,

interaction, is

(Wa ' ka ) = (W13 ' k13 ) + (WI' k / ). The figure shows that the

waves satisfy this requirement exactly if, and only if, the

corresponding points on the dispersion curve, together with

the origin (0,0), comprise the four vertices of a parallelogram.
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In the present analysis, which assumes exact synchronism, the next

step is to convert (2.25) into a single scalar equation by substituting

into it the small-signal relations (2.23). The result is a vector equa-

l b h rc i} of (2.23)tion, equivalent to M sca ar equations, ut since t e
1)

represent solutions to the linear equations, the M equations obtained

will all be equivalent and of the form

Of3y( )" "n ru ,k ,ruQ'~'ru ,k aQaa.--.a 1-'. -I-' 7 ......7 I-' Y
(2.28 )

sync
0137

Here na is the dispersion function of Eq. (2.21); Ai is a multi­

plicative constant, and Ai n0f37 belongs to a set of scalars defined by

As we have seen, (2.28) is not strictly correct, even in a homo­

geneous medium, because the derivatives of the wave amplitudes have

been neglected. However (2.28) can be converted to a valid differ­

ential equation by the simple transformation

k -k +j(-::,O)
......1) ......1) ox

...... 1)
(2.30 )

To understand this, consider, for example, (o/ot) operating on a field

quantity of Wave 1) In the small signal limit it is justified to

replace this by jru in order to obtain an algebraic term. If the
1)

amplitude of the wave component varies, however, the proper transforma-

tion is to replace (o/ot) by jru + (o/ot) ,where the new operator
1) 1)

acts only on the slowly varying amplitude of the component 1) If

this were done throughout the analysis, a more tedious calculation would

yield a differential equation instead of (2.28). The transformation

(2.30) is a simpler means of recovering the same differential elements.

Application of (2.30) to (2.28) leads to the expansion

(
ona

). Oa (ona
) oaA. a. a

a - J dU) . --- + J ~ • --- +
a a ot .--.a Ox

......

+ •.• , (2.31)



where the background state of the medium is assumed to be homogeneous,

and na nal3Y , and their various derivatives, are all evaluated at

(ru ,k) (ru~,~), and (ru ,k ) We require that these points satisfya --.a I--' -I--' r "'''I
the linear dispersion relation (2.21), so that the leftmost term of

(2.31) vanishes. The result may be cast in the form

d.a. d" n0f3y

~
aa

j L: " '"+ v .-- == a
13

a
y

dt ~ dx (dnaI®a)
sync
Of3r

where higher order terms in the expansion have been neglected, and

v
"'Tj

The vector v is the group velocity for Wave Tj ,i.e., the gradient
"'Tj

of the dispersion curve at (ru k )
Tj''''Tj

From (2.32), or its higher-order counterparts, one may generate a

complete set of equations for the wave components. To see this, con­

sider two alternate forms of the three-wave synchronism conditions:

(ruQ'~) == (ru ,k ) + (ru ,k )
I--' .1--' r a ---ai:' -"I "'-r r

and

(ru ,k) == (ru ,k) + (ru~,k Q)
"I "'''I r a ---a r -I--' "'-I--' r

These follow from the original synchronism condition, (2.26), and the

requirements on the complex notation, (2.15). If the preceding analysis

had begun with the combination (2.34) instead of (2.26) the result would

be identical to (2.32) except that the superscripts would be changed.

They would be altered by the same substitution required to change (2.26)
into (2.34): a ~ 13, 13 ~a, "I ~ -"I The other substitution, indicated

by (2.35), is 0: ~ r, 13 ~a, "I ~-13
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Equation (2.32), and the equations generated from it by the change

of indices, completely describe the behavior of the waves in the case

we have considered. They are often referred to in the literature as

the Ifcoup1ed-mode equations," but in this work they will usually be

called the Ifequations of wave evo1ution. 1f The steps in the wave analy­

sis are summarized schematically in the flow chart of Fig. 2.3. For

completeness, the figure also indicates that the application of an

approximation procedure, thellrandom-phase approximation," converts the

equations obtained in this manner into another set of equations, the

"wave-kinetic" equations. These equations describe the behavior of a

wave spectrum, as opposed to a set of monochromatic waves. They are

called Ifkinetic If because the wave variables which appear in them are

proportional to the energy density of the waves, rather than to their

amplitudes. The random-phase approximation, sometimes called the "RPAIf,

is discussed in detail later in this dissertation (see Section 4.2).

Let us now examine carefully the expansion step used in deriving

The expansion (2.31) resembles a Taylor series, where (2J/2Jt)
11

are manipulated as though they were small perturbations

from wand k , respectively. Since the complex
T} ~

amplitudes vary slowly, their derivatives are small, and the preceding

considerations lend credence to this expansion. However, the preceding

(2.32) .

and (2J/2Jx)
~ 11

of wand k

presentation clearly lacks rigor. For example, our algebraic manipu1a-

tions might lead to a term like l/wa
be

The expansion procedure would

but the meaning of l/[wa -j(2J/2Jt)a] , and the validity of the expan­

sion process have not been solidly established.

A rigorous derivation of the result (2.32) can in fact be made by

using Fourier transform techniques. 13 The interaction considered is

between wavepackets in w-k space. These are localized about the points

and ±(w k )
y y

The nonlinear equations are Fourier
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I EQUATIONS FOR WAVE EVOLUTION I
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~
WAVE KINETIC EQUATIONS
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o

Fig. 2.3 Flow chart for the nonlinear wave analysis. The analysis is
illustrated here for the interaction of three synchronous
waves. Solution of the linearized equations yields the
dispersion relation and S-S (small-signal) relations between
the wave variables. The latter are used to simplify the
nonlinear equations. The resulting equations describe the
evolution of monochromatic waves in the weak-coupling limit.
Application of the random-phase approximation yields the
wave-kinetic equations, which describe the evolution of a
continuous wave spectrum.
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transformed, and the expressions are expanded in Taylor series about

these points. Then the transform is inverted and the result is simpli­

fied by the substitution of qi exp j (m t - k . x) for the component CiT)i
T) T) ~T) ~

associated with each wavepacket (T)~,~,Y) The details of this pro-

cedure are tedious and will not be presented here. Our purpose here has

been to summarize the conventional approach by providing a simple pro­

cedural scheme which maximizes insight rather than rigor.

2.4.2 Higher Orders of Interaction and Virtual Waves

With a few simple modifications, the preceding steps yield the

equations for N-wave interaction effects. For example, consider a

medium for which the dispersion relation makes three-wave synchronism

impossible, but in which there are four propagating waves, a,~,y, and

5 such that

(m ,k ) = (mQ,k ) + (m ,k ) + (m~,k~)a "'Ct r f-' "'Ct r y ~y r u ~u r (2.37)

We shall show later in this work that, for any dispersion relation,it

is generally possible to satisfy these four-wave synchronism conditions

in the limit of sideband decay (see Section3.5.~. Here, however, we

are concerned with the entire class of nonlinear wave-wave interactions

which are characterized by (2.37). For these interaction~ it is straight­

forward to follow the same approach as before to obtain the four-wave

extension of (2.28)

(2.38)

sync
~y5

Certain terms must be added to convert (2.38) into a valid approximation,

however. These terms account for the presence of virtual waves (beats

between propagating waves). These phenomena are negligible in the three

wave case, but here we must consider their origin and their role in

higher order wave interactions. In cases where it is impossible to

have three synchronous points on the dispersion diagram, it is still
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possible for two linear modes, say ; and a to mix through the qua­

dratic nonlinear terms in the equations. This produces a virtual wave

(or beat) at (rn;+rno'~;+~o) Since this point is not on the dis-

persion curve, the virtual wave cannot exist independently of the ;-

and a-modes To lowest order, its amplitude is determined by a three-

wave equation like (2.28)

(2=1, ... ,M)

The index (;+0) means that the algebraic role played by rna and ~ in

(2.28) has been taken over by rn;+mo ' and ~;+~o ' respectively. The

additional index 2 , has been employed to identify a particular branch

of the dispersion relation, since (rn +m~,k +k~) is not uniquely asso-"I u~; ~u

ciated with a particular branch. The beats between a and ; result in

M virtual waves, one for each branch. The expansion process of (2.30)
is unnecessary for this case. Since D~;+o) is not zero, (2.39) is

already the lowest order approximation, sufficient to determine a( )
"1+0

The virtual wave is important to the coupled-mode equations because

it can interact with other waves to produce a contribution to the propa­

gating wave being studied. In the four-wave situation the appropriate

combination is

(rn ,!sJ = (rnR , b.) + (rn +m~' k +k~)a .~ r ~ .~~ r ; u~; ~u r (2.40)

The complete four-wave equations are obtained by combining (2.38) and

(2.39). The result is

(2.41)
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The final step is to expand (2.41) according to (2.30). On the right

hand side, (2.41) contains a sum over all combinations of small-signal

modes ~,y, and 0 which satisfy the four-wave synchronism condition.

It can therefore describe the evolution of the a component in the

presence of an entire series of discrete waves, and it also describes

the self-action effects represented in our formalism by the combination

~yo -+aa(-a) Using this combination, and assuming that there is only

one real wave component, a ,present in the medium, we may use (2.41)

to describe single-wave behavior outside the linear r~gime.

The foregoing example indicates the procedure for dealing with the

effects of virtual waves, which are the only non-algebraic complication

in the analysis of the higher order mode interactions. In the case of

N interacting modes, the beats between two, three, •.. , and (N-l) small­

signal modes must be taken into account in obtaining the coupled-mode

equations.

2.4.3 The Manley-Rowe Relations

The equations of wave evolution, as they are obtained from the

iterative analysis just described, often have symmetry properties which

allow them to be cast into much simpler forms. In the three-wave case,

for example, some obvious symmetry properties are

~y (-a-~-y)*D = D ,

These follow from the definition of the D's the requirement that the

(qi} be real, and the fact that one may switch the indices ~ and y
1)

at the beginning of the analysis without changing the resulting equations

for Wave a The corresponding symmetries for the higher order inter­

action coefficients may be deduced in the same manner.

In addition to the symmetries just mentioned, the equations for wave

evolution, taken as a whole, often possess symmetries which are not appar­

ent from the iterative analysis, when more than one mode of propagation

is involved. These symmetries stem from the fact that for certain large

classes of media, the nonlinear equations must be consistent with con­

servation or loss relations, which Penfield has labeled "frequency-power
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formulas" in a book of the same name. 3l These formulas are of four types,

which contain information about the transfer of either real or reactive

power between modes of oscillation in either dissipative or nondissipative

systems. The terms Ifreal power,1f "reactive power," "dissipative" and

"nondissipative," are given formal mathematical definitions by Penfield,

and correspond essentially to the physical concepts suggested by the

labels. Here, we shall discuss only one type of frequency-power formula;

the type which is of the greatest utility in the literature of nonlinear

interactions and in the Lagrangian theory of this work. Formulas of this

type are called "Manley-Rowe relations" and were originally derived for

nonlinear reactive circuits by J. M. Manley and H. E. Rowe in 1956.32

Penfield shows that, in generalized forms, these relations hold for

any system described by an "energy-state function," and for systems which

obey Hamilton's principle. The Lagrangian analysis of this work applies

exclusively to distributed systems which obey Hamilton's principle, so the

applicability of the Manley-Rowe relations follows. We shall now state

the Manley-Rowe relations in the manner of Penfield. We consider a set of

coupled oscillatory modes which have frequencies [m} ,each of which is
11

related to a set of J basis frequencies, [m a = 1, ... ,J} by the
a

equation

M

m11 = L
a=l

,

in which the [n11 } are integers. The basis frequencies are incommensur­a
able, i.e., no basis frequency, m is the sum of integral multiples of

a
any other basis frequencies. Let the power input into each mode, 11 ,be

denoted by P ; then the Manley-Rowe relations between the [p} are
11 11
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of continuous media, such as those having a Lagrangian description.

Penfield's results for such media do not take into account the energy

transfer to or from the background. They do provide a generalization

of (2.46) to more than three propagating wave components and beats

between them, but as we shall see in the examples of Section 4, the

background perturbations are generally significant in comparison with

the higher-order wave interaction effects. When this is the case, our

power relations should account for the energy exchange with the back­

ground.

2.4.4 Explosive Instability

The preceding discussion has employed an interpretation of an energy

component, E , as the contribution of Wave ~ to the averaged energy
~

density of the medium, i.e., the quantity E is the amount by which the
~

energy density of the medium would be increased by the excitation of

Wave ~ , if all other wave and background parameters were to remain

unchanged. This interpretation is in agreement with the more precise

definition of the (E} in terms of the Lagrangian formalism in Section
~

3, and it suffices for the present discussion of an instability phenome-

non which is fundamentally dependent on nonlinear processes. In keeping

with plasma terminology, we shall refer to this phenomenon as "explosive

instability;" the instability can occur, as we shall demonstrate, only

through the nonlinear coupling of positive energy waves with negative

energy waves. In this work, a "positive energy wave" is any wave, ~

; a "negative energy wave" is any wave,such that E > 0
~

that E < 0 A positive value of E
~ ~

familiar case in which the excitation of

, such

corresponds to the physically

Wave ~ to larger amplitudes

requires energy input from some source, internal or external to the

medium. However, for some media, the value of E may be negative for

a particular wave. This is possible, for example; in p1asmas. 34 In such

a case, the growth of the wave tends to lower the energy of the medium,

so that, as the wave grows, the energy released by it must be absorbed

by some internal or external sink. If no sink is available, the wave

cannot grow, because total energy would not be conserved in the process.
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On the other hand, if the nonlinearities of the medium couple a negative

energy wave to a positive energy wave, the latter may act as an energy

sink, and, subject to other conditions which we shall discuss, explosive

instability may result. In plasmas, early work on the explosive insta­

bility was done by Petschek35 and Sturrock,34 and the phenomenon has been

d 1 ' h ' d'l '. bl' . 36-41ea t w~t ~n more eta~ ~n var~ous recent pu ~cat~ons.

The implications of the Manley-Rowe relations depend dramatically on

the energy parities of the interacting waves. Consequently, we shall

employ the Manley-Rowe relations in order to describe more fully the

nature of the explosive instability. For clarity, we shall consider the

three-wave interaction, to which (2.46) applies. The integration of

(2.46) over space and time shows that the Manley-Rowe relations constrain

the total energy exchange between wavepackets as follows:

E +~ = constant, ~ + E = constant (2.47)a y

where

E =~3x E (~=a,~,y) , (2.48)
~ ~

is the total energy perturbation associated withE
~

From (2.46) and the synchronism conditions, we may

i.e., the quantity

Wavepacket ~

obtain the less restrictive relation

Ea + E~ + Ey = constant

which expresses the conservation of total wave energy in the absence of

energy input from the background (through linear growth) or external

sources.

We shall now divide all possible three-wave interactions into three

mutually exclusive classes, and examine the implications of (2.47)

(2.49) for each class. To this end we define a set of energy parity

factors, [a~} ,defined by

sign(E )
~

(2·50)
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IEyl may change.

effects on the Manley-Rowe

The wave interactions will be classified according to the parity permu­

tations, (O'a' 0'f3' O'y). , involved.

The interactions of Class A are defined to be those for which all

three interacting wavepackets have the same energy parity. The parity

permutations in this class are (+,+,+) and (-,-,-). For Class A inter­

actions, the relations (2.47) - (2.49) clearly show that the amount of

energy which can be transferred from any wavepacket to the others, and

vice-versa, is limited by the initial conditions.

The interactions of Class B are defined to be those for which the

parities of the two lower frequency waves are different. The parity

permutations in this class are (+,+,-), (+,-,+), (-,+,-), and (-,-,+).
For Class B interactions, the conservation of total energy, (2.49), does

not limit the magnitude of the energy exchange in any way. The Man1ey­

Rowe equations (2.47) still impose a limit on the energy exchange, how-

ever, because the parity of the high frequency wave, O'a ' must match

the parity of at least one of the other waves, 0'f3. or O'y
The interactions of Class C are defined to be those for which the

parities of the lower frequency waves are both opposite to the parity of

the high frequency wave. The parity permutations in this class are

(+,-,-), and (-,+,+). For Class C interactions, neither (2.47) nor (2.49)
place any upper bounds on the magnitudes lEal, IEf3 I, or IEyl This

is the case of explosive instability, in which the amplitudes of all

three waves grow as a result of the nonlinear interaction, until they

are limited by other physical processes. In this class of interactions,

the only constraints expressed by the Manley-Rowe relations involve the

relative rates at which lEa I, /Ef3I, and

This completes the analysis of parity

relations for the three-wave case. For higher orders of wave interaction,

similar arguments lead to other parity conditions which are necessary for

the existence of the explosive instability.

The phenomenon of explosive instability is purely nonlinear in nature,

since it relies on the existence of nonlinear wave coupling and it can

occur for waves which would have no significant growth or damping in the

linear limit. Of course, the parity conditions of Class C do not guarantee
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"wave-background interaction." The specific fonns of the background

equations will be developed for the particular problems considered, such

as the examples of Section 4. The steps of the analysis to lowest order

in the wave-background interaction are shown in the flow chart of Fig.

2.4. The synchronism concept introduced for the wave-wave interactions

applies to the wave-background interactions too. To show this we shall

consider two variants of (2.26):

and

(o,Q) (m k \ + (m k )
1')' "'1') /r -Tj' ~-Tj r (2.52 )

(0,0) = (m ,k ) + (m a,k a) + (m ,k )
~ a ~ r -~ ~-~ r -y ~-y r

Equation (2.52) is satisfied identically for any real wave component

(q~ + q~Tj) because of the constraints on the complex notation (see

Fig. 2.2). Equation (2.53) is equivalent to the three-wave synchronism

condition (2.26). The extension to combinations of more than three waves

is obvious.

quantities,

has no fast

Equations (2.52) and (2.53) show how products of complex
. . . . k

like q1~J or ~1~Ja~ ,may result in a quantity whichTj -Tj U -~ -y
scale variation. This is represented by the vector (O,Q)

The resulting quantity, say p ,may be written as Ipl exp je where

e is fixed. Although the slowly varying quantities represented by (0,2)
result from products of wave components, they are not necessarily wave­

like perturbations. They are slowly varying quantities to be detennined

by the background equations of motion. Since these are obtained by a bar

averaging process, the only combinations of wave components which can

contribute to them are those which satisfy (2.52), (2.53), or their

counterparts for higher-order effects. For the examples considered in

the present work, the highest order nonlinear tenns are quadratic in the

(qi} so the wave-background effects are adequately characterized by

(2.52).
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Fig. 2.4 Flow chart for the nonlinear background analysis. The
analysis is illustrated here for the quasilinear wave­
background interactions. The non-oscillatory (O,Q) compo­
nents of the equations are isolated through the bar­
averaging process. The waves contribute individually to
the background equations through the nonlinear terms, since
the products of oscillatory quantities may have a non-zero
average. The S-S relations are used to reduce the number
of wave variables in the equations. In general, the appli­
cation of the RPA, to the equations for background evolu­
tion, yields the kinetic equations, which describe the
background evolution in the presence of a wave spectrum.
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2.6 Scope and Complexity of the Conventional Approach

This completes the basic outline of the conventional approach, We

have given a prescription for obtaining a complete set of coupled-mode

and background equations which govern small perturbations from a static)

homogeneous reference state. In the Lagrangian analysis of Section 3)
additional important properties and useful standard forms of these equa­

tions will be discussed,

2.6.1 Scope of Application

The foregoing prescription can be extended. to account for a weakly

inhomogeneous reference state by adding terms to the expansion (2.23).

h 1 h 11 f ' 'f' . f h hOne must searc e sew ere or ]Ust1 1cat10n 0 t e process) owever)

since the Fourier analysis breaks down in that case. Weak inhomogeneity

will be dealt with by way of the Lagrangian method in later sections) so

it will not be discussed in more detail here. Among other cases which

will be considered in the Lagrangian analysis are those in which the

most convenient reference state is not a particular solution to the full

nonlinear equations.

An advantage of the conventional method is that it can deal with

dissipative media) such as collisional plasmas) so long as the equations

are of the form (2.1), In such cases the Lagrangian formalism does not

apply without further elaboration. This point is discussed further in

Section 5.

2.6.2 Algebraic Complexity

Up to this point the discussion has concentrated on methodology and

conceptual simplicity) and this has obscured the considerable algebraic

complexity encountered in many applications of the iterative method.

Often) too) this complexity is obscured in the nonlinear analyses to be

found in the literature. There) except for the simplest problems) many

algebraic steps are commonly omitted from the presentations; the results

are simply stated.



and these terms may themselves be associations of other

Virtual waves obviously complicate the analysis of high-order wave

interactions, and other major complications arise in the calculation of

expressions like D~l'" The complexity of this expression increases

both with the number of superscripts, N ,and with M ,the number of

scalar variables in the problem. If the coupling is between N modes

d h . bl {i. I } D0:l31" " I I d d'an t e var1a es are q: 1= , ...M , 1S ca cu ate accor 1ng

to (2.29). The number of algebraic terms generated by that scalar equa­
..N-Ition is M"'

terms. The need for simplification becomes quite evident in plasma theory

where, as we shall see, the lowest order wave-wave coupling may be of the

four-wave type, and seven scalar variables may be involved.

The complexities just discussed are in the algebra: the crude output

of the method before cancellation of terms and manipulation results in a

convenient form. In practice, it is common that after tedious manipula­

tion the expressions for the wave coupling parameters become relatively

simple. This is to be explained in part by the Manley-Rowe relations,

which imply that the coupling equations have symmetry properties which

are not obvious from the iterative analysis when more than one mode of

wave propagation is involved. Another reason for the simplification is,

as we shall see in the following sections, that many systems which have

complicated descriptive equations may be described by Lagrangians of

relatively simple algebraic forms.

Having established empirically that the results of the iterative

method can often be recast into a much simpler algebraic form, it is

natural that we should look for a method of obtaining a simplified set

of equations more directly. Such a method is developed in the next

section.
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3. THE AVERAGED-LAGRANGIAN APPROACH TO

NONLINEAR WAVE INTERACTIONS

This section develops a formalism and a method for the analysis of

nonlinear wave interactions in a continuous medium which can be described

by a Lagrangian density,! Section 3.1 reviews Hamilton's principle

and the corresponding classical Lagrangian mechanics for a continuous

medium, and introd~ces terminology which is essential to the presenta­

tion of later sections. To apply this mechanics, it will prove conve­

nient to employ an expansion of ! about some reference state, and this

section considers which choice of reference state will be best suited to

the analysis. Conventionally, a Lagrangian density is associated with

the equations of motion for the medium as a whole, but Section 3.2 shows

how Lagrangian descriptions may be developed for separate interacting

modes, each mode having its own set of variables. Here a tfdual expan­

sion" of ! is introduced which is helpful in separating the study of

fast-scale wave perturbations from that of slow-scale perturbations,

which comprise part of the background in which the waves propagate.

The Lagrangian mechanics of wave interaction is used in an averaged­

Lagrangian approach presented in Sections 3.3 through 3.5. There, the

Lagrangian density is averaged and simplified by means of the small-signal

mode structure obtained from the linear theory. This is done before

Hamilton's principle is applied. The averaging technique has some-

times been referred to as Whitham's method, but it has substantial

antecedents in the literature. 19 Since the papers of Whitham,l-3 the

method has been used and refined considerably by others. 20,21 This

section follows to a considerable extent the approach of Dysthe. 21 How­

ever, his analysis is extended, to account for background evolution and

the use of velocity as a coordinate. Section 3.6 summarizes the theore­

tical development. It systematizes the analytic steps in a form which

efficiently yields the coupled~mode equations for a given type of inter­

action in a medium which has a Lagrangian expansion in small perturba­

tions about a quasistationary and weakly inhomogeneous reference state.



3. 1 The Lagrangian Formalism

The Lagrangian approach presented here is restricted to systems

which are described by a variational principle of the Hamilton type

o

The integral in this equation is commonly referred to as the "action

integral." In the present work, the variational principle will be

modified from the form usually encountered in classical mechanics, in

order to allow for the use of velocity as a coordinate. This is conve­

nient for plasma analysis. For our purposes it is necessary that the

Lagrangian, L , be expressed as an integral, over all positional and

velocity coordinates, of a Lagrangian density, £, i.e.

f 3f3 iL = d x d v ~(q ,~,~,t)

where (qi(~,~,t), i=l, ... ,M} is a complete set of scalar generalized

variables representing perturbations from a reference state, and
i

~(q ,v,x,t) is a suitably brief notation for the Lagrangian density,
"'"' "'"'

which is a function of the coo~dinates, v, x, and t, the [qi},
"'"' "'"'

and their partial derivatives with respect to the coordinates~ We stipu-

late that (3.1) applies to any region of the medium that is bounded in

~-~ space, provided that the 6-variations of the [qi} are such as to

vanish at t
l

, t
2

' and on the bounding surface. To obtain the equa­

tions of motion from Hamilton's principle one makes a small variation
. '1

6q , of one variable. Then

+2:
k

+..• }

£
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The dots signify terms which would result from higher order derivatives
i

of q in £. Because of the restrictions on the delta variations,

the right hand side of (3.3) may be integrated by parts, without the
i

introduction of surface terms. Next, 6q is taken outside the brackets.

~qi f t'Then, since u is arbitrary in shape within the region 0 integra lon,

(3.1) can hold if, and only if, the quantity remaining inside the brackets

is itself zero for all ~, all ~, and for all

This result is the Euler-Lagrange equation for

t wi thin the
i

q

region.

:t [d(d:~/dJ -~ ~ [d(dq:~J ~ d:Jd(dq~~J +... = o.

(3.4)

The dots again indicate terms which arise if ! is a function of higher

order derivatives of
i

q If these are inc1uded~ the Euler-Lagrange

equations have the general form

l:( -1 )£+m(j )+n(k)

j,k,t, .
m(j),n(k)

o

where t, m(j) and n(k) are positive integers or zero, and j and

k are of value 1, 2, or 3, to indicate the cartesian position or velocity

axes. In the literature, it is often assumed that £ contains only the

[qi} and their first-order derivatives. Then the name "Euler-Lagrange

equations" refers to (3.4) where the terms represented by dots are zero.

However, in this investigation, the name Euler-Lagrange equations will

refer to the complete equations (3.5), unless otherwise indicated.
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(3.6)

3.1.1 Conservation of Generalized Energy

An outgrowth of the Lagrangian description is a conservation law

for generalized energy. This relation is introduced here and used later

in the interpretation of the wave interaction equations. For this pre­

sentation we shall assume that ! involves only the [qi) and their

first order derivatives.

When the medium is governed by the Lagrangian formalism one may

define a corresponding Hamiltonian density. We shall be interested in

this quantity only when it is expressed entirely in terms of the scalar

variables, with no generalized momenta introduced. In this case it will

be called the generalized energy density, e ,defined by

. d! dqi
e(q~,~,~,t) == 2: ( i ) - -!

. d dq /dt dt
~

When ! has its traditional dimensions of energy, so does e However,

! is sometimes not proportional to (/y-1U), as pointed out in Section 1.

In these instances, e is not equal to the total energy ( /Y~) asso­

ciated with the perturbations. For this reason, Sturrock34 has called e
the "pseudo-energy" density.

Corresponding to e, one may define a generalized energy flux, if',
in phase space. The flux vector is divided for convenience into spatial

and velocity components, ~s and ~v ,respectively. The definitions
'" .

are

, varO'k

From these and (3.4), it follows that e and ~ satisfy the conserva­

tion relation,
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in which d/dt refers to explicit time dependence. If this result is

applied to an ! which has no explicit time dependence, the right-hand

side vanishes, leaving a conservation relation in terms of the total

perturbations (qi}.

The result (3.8) is one part of a stress-energy-momentum tensor

relation of Lagrangian mechanics~2 This contains similar equations

involving the rate of change of generalized momenta, but they are not

essential to this discussion. Sturrock34,43 has discussed certain

properties of the full tensor relation applied to waves in the sma11­

signal limit.

3.1.2 Construction of the Lagrangian Density

The well-established approach for constructing an appropriate

Lagrangian density is to find L for a system of discrete elements and

then take the limit of a continuum. The classical prescription for

finding L is restricted to mechanical systems having ho1onomic con­

straints, which are eliminated by transformation to a set of independent

generalized variables, (q~:i=l, ...M} ,where j refers to a particular
44 J

particle or body. After the transformation, the only independent

variable is the time, t The state of a body j at a particular

instant of time is described completely by the dependent scalar variables,
i

(qj} The force on a body,

according to

F.
~J

, defines a generalized force, G.
~J

G~
J ~ Fjk (dxk/dq~)

k

(k 1,2,3, i=1, ... ,M)

i
As defined here, G. is a vector with M scalar components, (G.}

. ~J J
If the (G~} can be obtained from some velocity-dependent potential

~J . .
functionU:(q~,dq~/dt) according to

J J J

i
G.

J
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then L for the entire system is given by

L L
j

T. - U
J

jrepresents the kinetic energy of particleT.
J

The next step in the description of a continuum is to convert the

where

summation over particles into an integral over coordinate or phase space

by introducing a density function n(~,~) or f(~,~,t) In the latter

case, the result is a Lagrangian of the form (3.2), where the (q~} are
J

replaced by l(x,v,t) In this scheme, a particle j is identified
'" '"

by its location in phase space. Thus the classical prescription for a

continuous medium is

! = ff-au

The kinetic energy density is ff, and the potential energy density is uti

Unfortunately, for many non-mechanical systems of interest, it is

not clear which part of the energy of the system is to be classified as

kinetic, and which as potential. Nevertheless, Lagrangians exist for

many such systems. An example is a network of inductors and capacitors.

For such a system a valid Lagrangian can always be obtained through

(3.11) if the energy stored in the inductors is identified with T

and the energy stored in the capacitors is identified with U The

generalized variables in such a system are IQ~ =ftI~dtl where i

denotes a particular current loop of the circuit ~nd j denotes a par­

ticular circuit element. In this case L is easy to find because an

L-C network is analogous to a mechanical system of masses and springs,

each having one degree of freedom. The governing equations have the

same form if we make the identification Q~ ~ displacement component,

~1J: I~ ~ velocity component, ds~/dt J v~ ~ force component, F~
J J J J

L. ~mass, M. ; and l/C. ~ spring constant, S. An L-C network
J J J J

and its mechanical analog are shown in Fig. 3.1.
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Fig. 3.1 Analogous electrical and mechanical networks. The
Lagrangian for the electrical network is obtained
by comparison with the mechanical network, for
which we may employ the classical prescription
L (kinetic energy) -- (potential energy)



Other Lagrangians, which are less firmly based on analogies, are

to be found in the Lagrangian descriptions for fluids and plasmas where

both the particle equations of motion and Maxwell's field equations are

to be derived from £ The approach commonly found in the literature,

and which is used in this investigation as well, is to obtain a Lagran­

gian heuristically, either by guesswork or loose analogy with (3.11) or

(3.12). The result is then verified by a demonstration that it yields

the correct equations of motion. The present investigation, and a large

body of other work, show that the Lagrangian formulation may be very

useful in a direct sense, as opposed to being a source of equations of

motion for a system. It would be useful to develop a method for deter­

mining when and how L may be constructed from a particular system of

equations. The problem has received some attention in the literature,

for instance by Penfield and Haus,45 but it is by no means solved. The

problem will be discussed further in Section 5.

3.1.3 Expansion of the Lagrangian

In order to proceed further, we shall consider the medium only in

the limit of small perturbations from some reference state. This may,

for example, be described by some set of generalized variables (qi(x,v,t)} ,r ~ ~

in which case £ may be expanded about this state by the substitution

i
q (i=l, ... ,M)

i
Here the perturbations are the (qo) In our later plasma problems,

the reference state may be described by a velocity distribution function

and appropriate ~ and A fields. In these cases, the perturbation

assumption is incorporated into the derivation of £ so that the (qi)

in (3.2) automatically represent perturbations from the reference state.

Henceforth the notation will be adjusted so that the (qi) will always

denote perturbed generalized variables. Together with the reference

state, they completely describe the state of the system. The total

Lagrangian density may be expanded about the reference state in joint



powers of the perturbations:

In this notation) a given term) £(m) ) contains all terms in the

expansion which are products of m factors) each of which is one of the

(qi) or their various derivatives. In other words) £(m) is of "joint

power m in the (qi) "Since the perturbations are small) it is pos­

sible to obtain an approximate form for £ by terminating the expansion

at the desired order.

In this investigation) the expansion will always be made about a

reference state which is nearly homogeneous in x
~

and t This means

that the explicit space and time fluctuations of £ are very small if

measured over the oscillation period of any wave disturbances in the

(q i}medium. The fast-scale wave components are implicit in the An

equivalent interpretation is that the explicit x. and t dependences

of £ are on scales which are slow compared to those of the wave oscil-

Now let us consider the effects of the various terms

lations. In keeping with the notation of Section 2.1,

dependences will be identified by a factor E ,as in

the Euler-Lagrange equations of motion.

the slow-scale

£(qi)~)E~)Et)

(£(m)} on

The effects are illustrated in

through £(N) must be used

functions it is clear that the term £(3)
interactions, and that the expansion of £

Fig. 3.2, which shows that each functional in the expansion contributes

terms of a particular type to the left hand side of (3.5). Since £(0)

contains only reference state parameters it clearly cannot contribute to
ithe equations of motion for any particular variable q The term

!(l) is of first order in the (qi} ,so its effect will be to contri-

bute a source term, Si(~,E~,Et) which has a purely explicit depen-
i

dence on ~'~' and t it does not involve the (q} The func-

tional £(2) generates a linear differential function involving the (qi}

while the terms £(3) and higher contribute nonlinear differential func-'

tions of the variables. From the order of the corresponding nonlinear

describes the three-wave
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to describe interactions of N waves. In all, the expansion of ~

generates M Euler-Lagrange equations, which have the same general form

as (2.1). They are

Si + A~~ qj + higher order terms o (i,j=l, ...M)

As in Section 2, we are interested only in systems for which the descrip­

tive equations (3.15) have solutions which involve propagating waves; we

assume that

where the {q~(~,E~,Et)} denote background perturbation components,

and the components associated with a particular wave, ~ ,are denoted
i

by {q~} The complex notation of (2.15) - (2.16) will be employed to

describe these components, and their small-signal mode structure. In

solving (3.l5),weshall make the weak-coupling approximation, in which

the mode parameters {qi} , {ill }, and {k} ,evolve on the slow scale,
~ 1) "'T]

with EX and Et So do the slow-scale perturbations, {q~} ,which,

in the linear limit, constitute a particular solution to the inhomogeneous

problem (3.15).

3.1.4 Choice of Reference State

It has already been stipulated that the reference states used in the

perturbation expansion of ! must be nearly homogeneous in x and t

However, the analysis of nonlinear effects may be simplified considerably

when the reference states meet certain additional requirements. In the

present work, the reference states used are of two types; their charac­

teristics are outlined below.

The first type of reference state we shall consider is an approxi­

mate solution to the full nonlinear descriptive equations for the medium.

If this state is very close to an exact solution, the perturbations may

be small enough that the higher order (nonlinear) terms in (3.15) may be
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ignored. This leaves a system of inhomogeneous linear differential equa­

tions, which are equivalent in form to (2.13). A conventional frequency

analysis of the equations of motion shows that the slowly fluctuating

source term, Si ,cannot excite the fast-scale wave disturbances,

(q~} Therefore, when we are interested only in the evolution of the

waves in the presence of nonlinear effects, the term Si may be dropped

in (2.1), and the expansion for £ may be simplified to

However, since the reference state is only an approximate solution,

(3.17) is not necessarily a valid approximation for the description of

the slow-scale perturbation components, (q;}

To complete the perturbation analysis, one must describe the non­

linear evolution of the slow-scale perturbations from some known state.

For this, it is convenient to pick a reference state which is an exact

solution to the full set of nonlinear equations. This may be an equili­

brium state, or it may involve slow-scale time dependence. In either

case it is physically possible for all the perturbations to approach zero:

qi ~ 0 (i=l, ...M) Then it is clear from (2.9) that each Si is zero

(i=l, ...M) ,and that £1 has no effect whatsoever on the equations

which describe the perturbations from this reference state. Again, the

approximation (3.17) is justified, but this time for the complete per­

turbations, including the slow components.

3.2 The Lagrangian Mechanics of Wave Interaction

Up to now, the equations of motion have been studied for the total

b · b1 (qi}pertur at10n varia es, For convenience in analysis, these have

been divided into components· (q;} and (q~} in accordance with (3.16).
However, under certain conditions, it is possible to treat these compo­

nents as variables in their own right. Then, when they are varied sepa­

rately in accordance with Hamilton's principle, £ yields a separate

equation of motion for each component.
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We shall consider the case of N+l components, N of them waves.

Their sum is the total perturbation from the reference state, which we

shall require to be an exact solution to the equations of motion.
iHamilton's principle holds for an infinitesimal variation of q which

is of arbitrary shape within the interval t l < t < t
2

but which is

zero at t l and t
2

By definition, Hamilton's principle must also

apply to any subset of these allowable variations. Let us consider those
i

in which we vary only one component, q~ ,of the expansion

(i=l, ... ,Mj jJ.=O, ... ,N or O,o:,t3,Y, ... )

Lagrangian density appropriate to

by !~ ,where

The subscript zero corresponds to the slow (or background) component, any

other value denotes a particular mode of oscillation. The wave subscripts

may be integers one through N or one of the series 0:, t3, 1, ... when

convenient.
i

Under the variation of q~ ,Hamilton's principle yields an equa-

tion of motion for that component, in which the other components play the

role of coefficients. In the Lagrangian, the [qi: V 1~} contribute to
v

the explicit dependence on ~'~' and t To indicate this, the

the variation of qi will be denoted
~

The algebraic expression for !~ is obtained by making the substitution

qi ~ qi + ~.~ qi(v,x,t) in the perturbation expansion of! When. ~ ~vr~ V ~ ~

q1 is varied in this expression, the other components are regarded as
~

given functions of ~,~, and t Thus, £~ takes on additional

explicit dependence on the coordinates. Clearly, some terms in the

expansion of £~ do not contain any elements of [qi: i=l, ... ,M} .jJ. .
They have no effect on the equations of motion for component ~ ,and

may be omitted for purposes of calculation.
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At this point, two courses of action are available for the applica­

tion of Hamilton's principle. One is to make an arbitrary variation of
i

each component q~ ,without previously making any assumptions about the

form of the perturbation components. The other procedure is to use the

assumed form of the components, (2.15), to simplify the action integral
i

of (3.1) at the outset. The variation of q~ must then be restricted,

to be consistent with those assumptions. The first approach will be

outlined briefly below for the insight it provides into Lagrangian Mechan-

h b 1 · d . 1" k22-24 t bt"ics. It as een app ~e ~n ear ~er wor 0 0 a~n an energy-

transfer relation for three-wave interactions. The second procedure will

be discussed in the remainder of this section. It forms the basis of the

primary result of this investigation: the averaged-Lagrangian method for

obtaining the equations for wave and background evolution.

iIf an arbitrary variation is made in q~ Hamilton's principle

yields an Euler-Lagrange equation such as (3.5), with qi replaced by

q~ ,and with !(qi,~,E~,Et) and its expansion replaced by

(i=l, ... ,M; ~,\I 0, ... ,N or O,CX ,13 , )' , ••• )

of ~, ~, and t

on the coordinates.

When i
q~ is varied, the other components are regarded as given functions

Thus, !~ takes on additional explicit dependence

In this scheme of analysis, the number of variables

is (N+1)M , one for each permutation (i,~) The Euler-Lagrange equa-
i

tion for q~ contains less information than (3.5), which illustrates a

rule of variational calculus: the result of considering a more restric­

tive class of variations is ah'ays a loss of information. 46 However, the

process may be repeated for each of the (qi} ,thus producing a system
~

of (N+1)M equations of motion. These completely describe the physical

system.



~ i iIn making the variation uq~ ,we dropped the assumption that q~

corresponds to a single background or wave component of the form speci­

fied in (2.15). However, it is permissible to introduce such assump­

tions later in the Euler-Lagrange equations of motion, if this leads to

a simultaneous solution of the equations. This procedure has been applied

in earlier- work by the author to the interactions of three monochromatic

waves, with background perturbations and virtual waves neglected. One

very useful result is an energy transfer relation, closely related to the

conservation relation for generalized energy (3.8). It involves energy

components associated with each wave, and leads to the set of coupled-mode

equations for the three-wave problem. The same energy-transfer relation

will be derived later in this investigation by the more versatile averaged­

Lagrangian approach.

3.3 The Averaged-Lagrangian Approach

The averaged-Lagrangian approach is based on a specialized form of

Hamilton's principle which we shall call the "averaged Hamilton's principle."

In this subsection, the averaged Hamilton's principle is introduced, and a

formalism is developed which facilitates the application of the principle

to nonlinear wave analysis.

3.3.1 Restricted Variation of a Perturbation Component

If we assume in evaluating the action integral that the perturbation

components correspond to various frequencies of oscillation, the varia­

tions applied in Hamilton's principle must be restricted to be consistent

with that assumption. We shall stipulate that the (qi} , (m} and (k}
~ . ~ -~

of (2.15) and (2.16) are parameters of slowly evolving waves, i.e., they

are functions of EX and
i

oq ,are those produced
~ . .

1 · d ~ .... ~ "!!' .... ~amp ~tu e oq~ or oq_~

vo1ves small, slow-scale

Et Therefore, the allowable variations,

by a slow-scale variation of either complex·

, or a variation oe in the phase which in­
~

changes in the frequency and the wavevector.

The equations of motion are obtained from Hamilton's principle. One finds

the algebraic form of the perturbation of the action integral, and infers

the conditions on , and e which are necessary to make the
~
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perturbation identically zero. Such an approach will be used here.

The assumed form of the components, with its separation of fast and

slowly fluctuating quantities, implies that

(3·21)

This fact, together with (3.1), implies the "averaged Hamilton's princi-

p1e,"

t
2

o f dtfd~fi'L"£:= °
t 1

The variation symbol 0 denotes variations (oqi: ~ = 0, ... , N}
~

They are constrained in such a way as to be consistent with the assump-

tions used to evaluate ! ,i.e., only slow-scale variations in the

(q~} ,(q~} ,and (e~} are allowed. Since this constitutes a more

restrictive class of variations than those allowed in the exact Hamilton's

principle, one might suspect that information is lost in the averaging

process. However, this is just the information which has been incor­

porated into the assumed form of the solution (2.15) and, as long as that

form is valid, the averaged Hamilton's principle will suffice to deter­

mine the additional information needed: a set of equations for the

('q~(~,E~,Et)}
To illustrate the implications of (3.22), consider problems in

h h ~nvo1ves only the (qA~}, (en}w ic ! ~ ~ 'I' and their first derivatives in

~,~, and t The equations of motion then take the form of Eu1er-

( i} (Ai}Lagrange equations, in which the variables are the qo ,the qT\

and the (e} The equations for the wave components are
~
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and

o

where we have made use of equation (2.16). The Euler-Lagrange equations

for the background components are simply

If £ involves higher order derivatives of the variables, the equations

of motion are more complicated, but they are still obtained from (3.22).

3.3.2 The Dual Expansion of 1

It is apparent that the wave components, (qi} ,are qualitatively
Tl

different from the background perturbation components, (q~} ; the former

are related by a mode structure in the small-signal limit, the latter are

not. Because of this, different techniques will be used in the pre-

sent investigation to obtain the equations of wave and background evolu­

tion. The simple perturbation expansion of £ in (3.14) is not well­

suited to this purpose; it is more convenient to order the wave and back-

ground components separately in a dual expansion of £ The benefits

of this procedure are made obvious by the subsequent applications.

make the dual
i i iTo expansion, substitute (qo + ~) for q in the

Lagrangian expansion (3. 14), and reorder the terms into the series

£ = ~ £m(~' q~, ~' E~, Et)

m

i
where a term £m is of joint power m in the wave components (~} and

their various derivatives, i.e., each term of £ may be written as the
m
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factors, each of which is proportional to one of the

X in joint
m

The result must have the

product of m

(~} or their various derivatives. Now expand each term
i

powers of the (qO} and their derivatives.

form

£m = L: £m,J~' q~, Y." E~, Et)

n

where the index n denotes the order of the term in joint powers of the
i

(qo} The dual expansion for X is thus

m m n

The analysis of mode interaction is to be based on the averaged

Hamilton's principle, so only the bar average of the dual expansion will

be used. This averaged dual expansion is relatively simple because all

oscillatory components are dropped from each term of the dual expansion.

Under the bar average, some of the (X } vanish, and others affect
m,n

the equations of motion only for certain components. Neither the wave

nor the background components are affected by ~OO since this term

contains only reference state parameters. The terms £0 n (n ~ 1)

affect only the background evolution, since they involve' only the (q~}

Terms Xl (n ~ 0) vanish identically, since they are first order in
,n

the wave perturbations. They can affect neither the wave nor the back-

ground evolution.

The foregoing considerations show that, for the application of the

averaged Hamilton's principle to the wave components, the expansion of

X may be simplified to

(Xl <Xl

-s,w =" "!LJ L...J m,n
m=2 n=O

in which the superscript w indicates that only the wave components

(q~} are to be regarded as variables. In this case, the (q~} are

treated as given functions of y",~, and t
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For the variation of the background components, the equivalent

expansion is

0000co

-b ~ '"" '"" 1!, = L...J !'O,n+, L...J L.J m,n
n=l m=2 n=l

in which the superscript b indicates that only the background perturba­

tion components, (q~} ,are to be regarded as variables, and the (q~}

are to be treated as given functions of ~,~, and t

An inspection of the algebraic form of the (£ } reveals that,m,n
through the averaged Hamilton's principle, each term in the dual expan-

sion generates a particular class of terms in the equations of wave and

background evolution. The relationships are shown in Fig. 3.3, and they

will be described below. Their origins will become readily apparent

later in the work, when procedures for obtaining the equations are estab­

lished and applied.

The top line of Fig. 3.3 shows the equations of background evolution,

which are obtained through the variation of the (q~} in the averaged­

Hamilton's principle. All terms of these equations involve the (q~} and

the reference state parameters; they differ in the extent to which they
i

involve the wave components, (q} The background terms do not involve
i ~

the (q~} at all, and would thus describe the evolution of the background

in the absence of waves. The quasi1inear terms describes the effects of

i~d~vidua1waves on the (q~} These terms involve quadratic products,

q~qJ of the components associated with each wave, ~ They are called
Tj -Tj

Iquasi1inear" because the effects they describe can take place even when

the waves propagate without wave-wave coupling, according to the linear

theory. The nonlinear W-B (wave-background) interaction terms, gen­

erated by 1
3

, 14 ,etc., describe the collective nonlinear effects of

the waves on the background. They involve the wave components through
"i " "kproducts of the form q-aqr;3q/,... ,where af3/,... is a synchronous mode

combination.

The bottom line of Fig. 3.3 shows the equations of wave evolution,

which are obtained through the variation of the (qi} in the averaged­
~

Hamilton's principle. The quasi1inear terms describe the propagation of
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Fig. 3.3 Perturbation expansion of the averaged Lagrangian density,
and the interaction equations. The primary expansion, in
joint powers of the wave components, is shown. Each term
in the primary expansion has a secondary expansion, in joint
powers of the background (non-oscillatory) perturbation
components. Through the averaged Hamilton's principle, each
term in the primary expansion of I generates a particular class
of terms in the wave and background equations. The Lagrangian
perturbation analysis is indicated by solid lines; the direct
expansion of the equations is indicated by dashed lines.
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individual wave components in the absence of wave-wave coupling effects;

they account for any wave growth or damping which results from the charac­

teristics of the background state. These terms are labeled "quasilinear"

because, although they are linear in the {q~) ,they also involve the

variables {q;} ,which fluctuate on the slow scale. The nonlinear W~W

an~ W-B interaction terms, generated ~y. 1
3

'£4 ,etc., involve the

(q~} through products of the form q~qJ ... ,where t3,Y, ... are part of
~ ~ y

a synchronous combination, ~y... These terms describe the nonlinear

interaction of the waves with one another, and they account for the effects

of the slowly evolving background through their dependence on the (q;}

and the reference state parameters.

approximated by a partial expansion,

1
m

at some order, and each term,

Henceforth in this work, when the dual expansion is used in perturba­

tion analyses, 1 will be approximated by truncation of the series ~!mm
in this approximation will itself be

~ ! in powers of the (qoi}
n m,n

This will be done in such a manner that the approximation is self-

consistent to a given accuracy in powers of E

For the averaged-Lagrangian analysis, it is necessary to develop a

formal notation for the expansion terms of 1 In order to determine

the algebraic form of those terms, we shall begin by considering how they

may be evaluated in the small-signal limit, where the small-signal relations

may be used to simplify the expressions.

The small-signal relations themselves are established in the Lagrangian

formalism through the solution of the quasi linear Euler-Lagrange equations

generated by the term !2(~,q;,~,E~,Et) in the dual expansion of !

(ai} { i}The equations are linear in the variables, ~ ; the qo are taken

as given functions of the coordinates. When the equations are solved, the

resulting small-signal relations will have the same general forms, (2.21),

and (2.23), encountered in the iterative analysis, although the variables

in the Lagrangian description of the problem may be different. The signi­

ficant expressions of the small-signal relations are the dispersion func­

tions, (ni} ,and the mode structure coefficients, {c~} These may,

in accordance with the dual expansion scheme, be regarded as expansions
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in joint powers of the , i.e.,

T) . DT),O DT),lD£(w,k ,q~,V,Ex,Et) = + +T) T) ~ ~ £ £

ci(w ,k ,q~,V,Ex,Et) i i
= c 0 + c

T),l + ...T) T) ~ ~ ~ T),

Once established, the small-signal relations may be used to pro-

duce an approximate expression for! To this end, each wave variable

in the dual expansion of ! is expressed in terms of the complex nota­

tion of (2.15) - (2.16). The small-signal relations are then used to

express the results in terms of the (q~} , the (BT)} , and a set of

complex amplitude parameters, (a} , one for each wave present in the
T)

medium. Finally, the bar average is taken; the result is the desired

expression for !

it is obvious that

From the previous discussion of the dual expansion

and

! = 01

From the structure of the (!m: m? 2} we see that the bar averages of

those terms may be expressed in the forms

+ (terms of higher order in

+ (terms of higher order in E)

\

+ (terms of higher order in E)

etc. ,
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in which the algebraic form of each coefficient,

A-rvQy (ill-,"",!s--"""illa , ~,ill ,k •.• , qOi ,v, EX, Et)
'-'1-' ••• -u, -u. f-'. -f-' y ~y ~ ~

is determined through the approximate evaluation of the (E }
m

, using

the small-signal relations. Corrections to that approximation appear in

, which will be dealt with later in theE

In the expressions (3.35) 8. denotes
T]~

The effects of synchronism mismatch are

the terms of higher order in

analysis (see Section 3.3.3).
the imaginary part of 8

T]
accounted for in (3.36) - (3.37) through the real parts of the quantities

(58_a(3/"'} , defined by

58~ (EX,Et) =8 + 8a + 8 + ...
'-'1-'/' •• ~ -a f-' 1

The notation "sync", used in (3.36) - (3.37), indicates that the sununa­

tions are over mode combinations for which

.L ~ Re(08!'VA ) ~...l.. . ::>,21 Re(08 ) ~ E, (T]=(X,(3,I,"') (3.39)
ill ot -""l-" • • k u~ -0f3/' ••

T] ~T] .-

in which the symbol "Re(58 )" denotes the real part of 58-a. . . -a . ..
Equation (3.39) is the generalization of the synchronism conditions

(2.26) to account for slight synchronism mismatch between frequencies

and wavevectors w~ich are complex quantities. Mode combinations which

do not meet this requirement are termed "asynchronous;" they do not

contribute to the (S}
m

In keeping with the dual expansion scheme, we associate each A

coefficient of (3.35) - (3.37) with a series expansion

AnA =A nA O+A 1+'" (3·40)
-'-'1-' I' . . -'-"I-' 1 . . . , -0f31 . • • ,

in which the second set of subscripts indicates the order of the term

in joint powers of the (q~} The A coefficients have algebraic

and symmetry properties which follow from the synchronism conditions
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and the fact that ! is real. For the (A~) these are

"\*A = J\.

~ ~
(3·41 )

For the other A coefficients we have

*A = A-0f3)'. . • a:-f3 -)' .•• ,
•

and the property that the A coefficients are completely symmetric with

respect to permutation of the indices. For example,

3.3.3 Expansion in E

So far, each term in the expansion of ! has been expressed only

to lowest order in E ; the small-signal relations have been assumed

to hold exactly. According to the weak-coupling approximation, however,

the linear mode amplitudes may depend on €~ and Et , and this depen-

! , originally
m

For example, !2

1 OAn
+

2 ok
~~

dence should be taken into account in the evaluation of !

Section 2, the information will be recovered by the expansions

ill ~ill -j(d/dt) , k ~ k +j(d/dx) in each term,
~ ~ ~ ~~ ~ ~~

evaluated according to the small-signal relations.

becomes

"[A a a _1~ (oana _ a oa-n)
~ ~ ~ -~ 2 Om~ ot -~ ~ ot

(~ a - a ~)] eXP(-2e .)
o~ -~ Tj o~ rll·

As in

The form given for the expansion in (3.44) ignores the derivatives of

ill and k
~ ~~

and (%t)1)

derivatives.

This is an approximation, since the operators (%x)Tj

act on both wave variables, a and e , and their
11 1)

A full expansion, which takes this fact into account, is
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much more complex than that presented here, and it interferes with our

use of the small-signal relations to express ! in terms of a single

For these reasons, only BTj and its

are accounted for in the subsequent

parameter for each component.

first derivatives, m and k
Tj ~Tj

averaged-Lagrangian analysis. Such a procedure by

the analysis to a homogeneous reference state. If

no means restricts

the inhomogeneity is

sufficiently weak, we may proceed with the Lagrangian analysis as though

m (EX,Et) and k (EX,Et) were constant. The resulting equations areTj ~ Tj ~

still valid for very small, but finite, values of e. Therefore, the

effects of a slowly fluctuating, weakly inhomogeneous background may be

described, to lowest order, by means of the equations already obtained

and the properties of the phases, {BTj} This is a version of the

classical Eikonal analysis for ray optics in inhomogeneous media. 44

Each of these terms must be expanded up to

and

For the

In (3.44), consider the terms involving derivatives of

'£ (m < n)
m

an equivalent order if the approximation is to be consistent.

"a
Tj-

a which are jointly of some integral order £ Clearly, these
-Tj

terms are of a higher order than ATjaTja_T) by a factor E£ In approxi-

mating ! by the series !2 + !3 + ... +!n it is important that each

term be expanded up to the same order in E Since E is related to

the mode amplitudes, we expect that, when taken to lowest order in E

! will be of higher order than the lowest order approximation to any
n

preceding term

Lagrangian analysis, a consistent expansion can be obtained if we use the

rule

Then the first term in !2 is O(E
2

) ,arid those involving OA 10m
3 T) Tj

and OA 10k are O(E) the same order as the lowest order approxi-T) ~Tj

mation to £3 If the expansion of ! is to be correct up to 0(E3) ,
the contributions from both £2 and £3 must be included.
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3.4 Background Analysis

We now consider the equations for the background evolution, taking

the behavior of the (a~} as given. Since the (q~) are not related

by a mode structure in the limit of very small perturbat1ons, it has

been necessary to include them individually in the dual expansion of !

The equations of motion for the background are therefore a set of Euler-

Lagrange equations with ! replaced by!b There is one equation for

each variable q~ (i=l, .•.M) We shall use the crudest approximation

to !b which will relate the (q~) to the wave components. This is

= !a,l + !a,2 + ... +~ (A~,l + A~,2 + ... )a~a_~ eXP(-2e~i)· (3.46)
~

If the expansion is about an exact solution, !a 1 is identically zero.,
The procedure for the background analysis is to make a trial approxi-

-b
mation to ! by dropping additional terms from the expansion (3.46).
The corresponding equations of motion are then found from (3.5) and are

used along with the ordering rule to establish the magnitude of the com­

ponents (q~} in relation to the ( Ia~ I} and E The magnitude rela­

tions have the form

i ~(i)q ~ Ea

where the constants, (~(i)} are determined in the analysis.

If the approximation is self-consistent, the resulting magnitude

relations between the (q;) and E will show that the terms omitted

from the expansion of £b are negligible compared to those retained.

If not, additional trial approximations are made until self-consistency

is achieved.
i

Because the (qa} are treated independently of one another in the

background analysis, it is not possible to describe the analytic pro­

cedure in more detail unless one turns to a particular example, as in
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the applications of Section 4. At this point, it is sufficient to under­

stand the general procedure and the important features of its output:

(a) a set of descriptive differential equations for the (q~) and

(b) a set of magnitude relations between the (q~) and E A flow

chart of the analysis constitutes part of Fig. 3.4 (see page ). The

figure also illustrates the wave analyses, which will be developed in

Section 3.5. As the figure indicates, the two analyses are linked

through the dual expansion of ! and the ordering relations. Together,

they provide a unified description of the nonlinear behavior of the

entire medium according to (2.24).
From the description of the background analysis given above, we see

that the approximation to !b obtained from (3.46) will be adequate to

describe the quasilinear effects, i.e., the interactions between the

background and any number of monochromatic waves which do not interact

with one another directly. This is consistent with Fig. 3.3. For some

cases, such a description of the background may be quite adequate. The

example of Section 4.2 shows that the form (3.46) is sufficient to produce

the lowest order Ifquasilinear equation" for the evolution of a distribu­

tion function, F(~,Et) ,in a warm plasma. However, one may wish to

account also for the joint effect of three or more synchronous waves on

the background; then 1b must be expanded to a higher order in E .

In general, the expansion used to describe the joint effects of N· waves

on the background would be

in which the formal expressions (3.35) - (3.37), the ordering rule (3.45)
and the magnitude relations (3.47) are used to expand each term to equal

accuracy in powers of E The Euler-Lagrange equations for the (q~)

then describe the background evolution to the desired accuracy. If the

number of scalar variables is large, the analytic procedure just described

can be very tedious, but in some problems there are symmetry considera­

tions which fix some of the (q~) at zero for all ~'~ and t
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Having obtained the equations for the background evolution, we may

wish to transpose the results by changing variables. This may be done

in order to express the results in a form which is more familiar or more

easily interpreted physically. It may also be done in order to facili­

tate the wave analysis, described in the next subsection. In the latter

case, different reference states are employed in the wave and background

analyses. Such transformations are legitimate, provided that they obey

the constraint that the background state (= reference state + slow-scale

perturbation components) is the same in both analyses. Suppose that we

have described the background evolution by obtaining equations for the

slow-scale perturbation components, (q~} ,from a specified reference

state. For the wave analysis, it may be'more convenient to employ a new

"primed" reference state, in which the components (q;~} are identically
i

zero, i.e., the (qO} are absorbed into the new reference state. In the

new perturbation description, the averaged-Lagrangian formalism is con-

siderably simplified, since

joint powers of the (q;~}

analysis is employed in the

there is no secondary expansion of 1 in

This technique for simplifying the wave

example of Section 4.2.

3.5 Wave Analysis

In this subsection, the background parameters are taken as given, and

This integralover velocity.

arid

?
Since the wave parameters (a}

1)
no information is lost by integrating

the wave behavior is described by way of the averaged-Lagrangian formalism.

The reference state may be an approximate solution such that all slow-scale

perturbations, (q~} ,are zero, or the (q~2 may be small, in which case

each A coefficient in the expansion of S represents an expansion in

joint powers of the (q~} In either case, the reader should keep in

mind that the background affects the waves through the A coefficients.

The effects of the waves upon one another are obvious in the following

analysis. The basic steps of the wave analysis are shown as part of the

complete averaged-Lagrangian method in Fig. 3.4.

(e} are not functions of v
1)

will be denoted by S ,arid it may be expanded in joint powers of the



(a'" ) in a series
T)

in which

(~ ) hThe formal expressions for the lm may be obtained throug integra-

tion of Eqs. (3.35) - (3.37) over velocity. The integration leaves the

equations unchanged, except that

1 ~ lm m A ~ A-013)' • • . -013 )' . • • ,

where

~

After making some self-consistent approximation to l , we may

obtain the equations of motion by varying the mode amplitudes (qT)} in

accordance with the averaged Hamilton's principle. Alcernatively,we may

The amplitude variation differs from the

complex components

(rq~ I) unchanged.

cientto generate a

vary the real phases (e }T)r
phase variation in that it results in an arbitrary slow variation of all

(q,; = q~ exp je} The variation of e leaves
'I 'I T) T)r

In fact, the amplitude variations alone are suffi-

complete set of coupled equations for the propagat-

ing waves, plus convenient formulae for the amplitudes of the virtual

waves. These are derived below. The phase variations will be discussed

later in this subsection, where it is shown that they lead to a set of

action-transfer relations.
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3.5.1 Amplitude Variation

If we approximate '£ by L: Aa a exp -2e ., a~d vary a
~ ~ ~ -~ ~1 -~

recover the dispersion relation for the branch containing Wave ~

, we

as

Unless a is zero, we must have
~

with one of the factors (n£} of
~

The expansion of 1 ,up to

£ = "'" ~ a a exp (-2e.)L..J ~ ~ -~ ~1

~

~~ = 0 ,so ~~ may be identified

the dispersion relation.

o(E3 ) ,yields

+I: [- 1 (~) (~a -a~) +1 (~). (~a -a~)]exP(-2e .)2 OW at -1') 'n ot 2 ok ox.~ ~ ox 'n1. ~ 'I ~ _ _ 'I.

~

+ I: [l:-ex,~ , yO-,iViy exp j 8e -atlY + l:a_~ -r"aO_~0_Y exp(- j 8e~Y~
~~c

The present analysis concerns

For these waves, the terms in

zero. The variation of
A

a -ex

propagating waves, to which (2.21) applies.

the first summation of (3.54) are therefore

in the expression (3.54) yields

=L:
sync
Of3y

This result, with appropriate permutations of the indices ex,~, and y,

provides a complete set of coupled equations for three propagating modes.

{2--,



X* A A
I a

Equations which describe the interaction between four or more waves may...
be obtained in a similar manner, except that ! must be expanded up to

a higher order in E ,and virtual waves must be taken into account.

Virtual waves contribute to terms of O(E
4) and higher, as is shown in

the four-wave interaction analysis presented later in this section.

Permutation of subscripts in (3.55), use of the symmetry properties

(3.41) - (3.43), and additional algebraic manipulation produce the equa­

tions of wave evolution in the simplified standard form

j(gt)a Aa; = X A~ AI '

j(gt)~ A~

j(gt) A = x* A A
I I ~ a

in which the normalized amplitudes,

ficient, X are

fA} ,and the wave coupling coef­
1)

(

-OA )1/2
A = -21 a exp (-8 .)

1) Oill Tl . TfL
1)

The operator (D/Dt) is defined by
1)

(D) A oA oA [ 1(0- A :=...:....:!l+v .-21+ ill +--
Dt 1) 1) Qt ~T) o~ T)i 2 o~

• v ) - k . . V.]A
~1) ~ 1. ~1) fJ

in which ill. and k. are the imaginary parts of ill and k
1)1. 'l)1. 1) 1)

respectively, which are determined by the small-signal dispersion rela-

tions (2.21). The vector ~T) is the group velocity of Wave T) ,i.e.,

- (OA /ok) dm
v _ n ~n - -21 (3.59)
~T) (OA1)/Oill'l)) - d~
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Equations (3.57) - (3.59) show that the [v} and all other parameters
.....T]

of the equations (3.56) may be determined by evaluating the A's and

their m and k derivatives. When the waves evolve only in one space

or time dimension, are in exact synchronism, have no linear growth or

damping, and propagate in a homogeneous background, the solutions to (3.56)
are known in terms of Jacobian elliptic functions. 13 ,47

The normalized variables, (A~J ,were chosen because they lead

easily to an important energy relation. To obtain this relation, multiply

the equation for the ~ component (~= a,~,y) by -jA; on both sides,

then add this equation to its complex conjugate. The three resulting

equations imply that

where

(..Q..)t jA )2
Dt aa .

= (lL)t IA 1
2 =

- Dt ~ ~
_(lL)t )A 12 =

Dt y
y

(3·60)

and

(.Q.-)t lAo 12
Dt T)

T]

The abbreviation "c.c.," used here and later in this work, stands for the

complex conjugate of the term to its left. The result (3.61) may be

interpreted in terms of the generalized energy and energy flux introduced

in Section 3.1.1. Consider the definition of e and ~s in (3.6) and

(3.7), as they apply to a wave perturbation in the small-signal limit,
s s i

where,we can approximate e by e
2
,~ by ~ and the (q} by the

wave components [q~J After bar-averaging, simplification by way of

the small-signal relations, and integration over velocity, theseexpres­

sions become

€ == e
T] 2T] (oX)---!l. " A*m a a

T] omT) T] T]
,



and

have made use of the fact that the term

are the averaged generalized energy and flux densi-where E and 4>
'I') "''I')

ties corresponding to Wave In obtaining these expressions, we
~

!2 ,which by definition

and (3.55) may be used in (3.54) to

Equations (3.63) - (3.64) show that

appears in the expression for E ,is zero.
'I')

order in E For example, (3.53)
show that 1

2
= 0 up to 0(E3 )

the relation (3.60) is equivalent to

This is true to arbitrary

E
-0f3 !

,

which we shall call the "action-transfer relations." In this equation,

E 1m (= Ii /2) is the averaged action density of Wave 'I') ,and E
'I') 'I') 'I') -0f3 !

will be referred to as the three-wave coupling energy. The first two

equalities of (3.65) are the three-wave Manley-Rowe relations; they are

more general than the formulae (2.46), since they account for linear

growth or damping and weak inhomogeneity. The action transfer relations,

as a whole, contain even more information than the Manley-Rowe relations,

since the latter do not specify

One need not calculate the
E-af3!
A's and their derivatives in order to

evaluate the energy components of (3.65).
E given in (3.62) - (3.63) show that

-0f3!

The definitions of Eex and

and
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in which it is understood that the small-signal relations are to be used

at'
analy-

to evaluate the E'S in terms of three scalar parameters, aa '
and a These formulas were the basis of earlier mode coupling

y 22-24
ses by the author. In that work, the three-wave energy transfer

relations, together with the formulae (3.66) and (3.67) were derived by

a different method, based on the "arbitrary variation" approach of

Section 3.2. In this earlier approach, the coupled mode equations are

deduced from the action-transfer relations instead of vice versa. This

earlier approach is not employed in the present work because it does not

apply to background evolution, and is cumbersome to apply to higher order

wave interactions in which virtual waves are important. The averaged­

Lagrangian method of this section extends easily to account for such

phenomena.

For the three-wave case, the averaged-Lagrangian approach presented

here, and the alternative approach just mentioned, lead to the same equa~

tions of wave evolution, and to equivalent prescriptions for evaluating

the parameters of those equations. In both cases, the parameters are

obtained from the terms of the expanded Lagrangian and the small-signal

relations between the

3.5.2 Phase Variation

It has just been shown that the energy-transfer relations may be

obtained from the coupled-mode equations by algebraic manipulation;

however, it is also possible to obtain these relations from l by

means of the phase variation. The procedure is presented here for its

conceptual value, even though no new equations are obtained.

are

which are the real{e }
1)r

It is important to remember that this

The quantities to be varied are the

parts of the phases {B1)}

implies a simultaneous variation in e since e and B
-1)r 1) -1)

related by our original assumption (2.15). Consider the variation of
::::.

in the expression for l given by (3.54), keeping in mind the fact

and are spatial and temporal gradients of The



corresponding Euler-Lagrange equation is

- j3A~ a aA a + c. c. (3.68 )
-'4-')' -cx I-' )'

which will be recognized as one of the action-transfer

The other two relations follow from the variations of

The results just obtained are in keeping with the

relations, (3.65).
e and e
t3r )'r

rule that a more

restrictive variation yields less information: the action-transfer

relations do not tell us as much as do the equations of wave evolution

(3.56), which were obtained by the amplitude variation. The phase varia­

tion used above is more restrictive, because it changes only the imaginary

part of In(;) The amplitude variation changes both this and I; I
~ ~

In principle, the phase variation could do something that the amplitude

variation cannot: vary the frequency and wavevector of Wave ~

However, the expansion procedure used here for i neglects all but the

first order derivatives of e Therefore, in this analysis, the varia-
~

averaged-Hamilton's principle may not include changes
20 21Both Dougherty and Dysthe have noted in earlier

in thetion 5e
~

in (J) or k
~ '4

work that the phase variation leads to the action-transfer relation for

three waves, with background perturbations neglected.

3.5.3 Higher Order Nonlinear Effects

It was shown in Section 2 that if the interaction involves four or

more waves, the virtual waves affect the equations of motion for the

propagating modes. If the effects of virtual waves are to be accounted

for, it will be necessary to calculate their amplitudes, and the averaged­

Lagrangian approach provides a convenient means of doing this. Consider

the expansion of ! up to 0(E3) in (3.54). The quantity to be varied

is a
"cx In the preceding analysis, cx has been assumed to be a

propagating mode, and the term AaBaB_a in ! made no contribution

because of the linear dispersion relation. Now, however, CX is a virtual

wave, denoted by (t3 + )') , and is not zero. In this case,
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the amplitude variation in (3.54) gives

A( )a( ) = -A (A )0. ao.a exp joe t>IQ + O(E
3

)
13+)' 13+)' - 1-'+)' 1-')' I-' )' -'-"\-')'

Equation (3.69) implies that /a(I3+)')I is of O(E
2

) This does not

contradict the ordering rule (3.45) however, since E is associated with

fa I only when ~ is a propagating mode.
T)

For the interaction of four propagating modes, the ordering rule

shows that ! must be expanded through O(E
4), in which case

A A*A*A* . ( 5)A A "a ao.a a" exp Joe ("',Q. " + c.c. + 0 E
CX-I-'-)'-U cx I-' )' u -'-"\-')'u

For brevity, we have used the fact that for real solutions a a*
-T) T)

(~=O:,I3,)',o) The symbol ":" is introduced here to denote the inner

prod~ct of the two matrices to either side of it. In this case, the

matrix to its right is a dyad.

As in the three-wave analysis, we

propagating waves, for which the terms

They will henceforth be

shall be concerned here with

[ ~ /aA /2} ·d 11A are 1 entica y zero.

" "dropped from the above expansion. The expansion

implicitly contains the assumption that no three propagating modes have
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(ru,~) values which satisfy the three-wave synchronism conditions. That

assumption is often valid, since for some systems the three-wave syn­

chronism cannot be satisfied at all,11,30 and in cases where three-wave

synchronism is possible, it may prove to be possible only over limited

sections of the dispersion curves. Thus, the Lagrangian (3.70) may well
21

describe the lowest order nonlinear interaction between waves. Dysthe

has discussed the special case of the decay of a wave into sidebands

, (3.71)

where the frequency shift &0 (:=O~/Ya)is small, and has also com­

mented on self-action effects:

(ru k) := (ru k) + (ru k) + (ru k )
a'~ r a'~ r a'~ r -a'~-a r

These interactions are generally possible, regardless of the shape of

the dispersion curves. Another combination which automatically satis­

fies synchronism is

This interaction is the only one which has any effect if the "random

phase approximation," mentioned earlier, is used to go from the inter­

action equations for monochromatic waves to an equation for the evolution

of a wave spectrum; the point is illustrated by the example of Section 4.2.
Here, however, we shall be concerned with the general equations for four

distinct, propagating waves

(ru k) := (ru k) + (ru k) + (ru k )a' a r ~'~ r 7'~7 r o'~o r

At this point, for illustrative purposes, the analysis will be

restricted to interactions in which the vectors ((ru ,k)} are real.
T)~

72



Variation of "'* ('" )a =aex -ex in the expression of (3.70) gives

The second equality follows from (3.69) for 8(y+o) The above result

is rather complicated, but it covers a general problem which includes the

self-action, sideband decay, and phase-invariant interactions charac­

terized by the synchronism conditions (3.71) - (3.74). The result (3.75)
describes the weak nonlinear interaction of four discrete modes, propaga­

ting in directions which are constrained only by the synchronism require­

ment, in a medium which may be spatially anisotropic and weakly inhomo­

geneous in both space and time.

In special cases (3.75) can be simplified considerably, as we shall

demonstrate for the case in which the background state is homogeneous.

The effects of inhomogeneity are contained in the bracketed terms on the

left hand side of (3.75). These are now dropped. We may also use the

fact that in a homogeneous medium, in the absence of three-wave syn­

chronism,
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This relation is just a special case of (3.55). It may be used to

express d8a/dt as -~. (daa/d~) in the highest order terms of

(3.75), with negligible error. The result may be cast into the form

-=- (d8a +
dt

m
a

sync
01370

[ A. A. IA. ] - A.-013(7+0) (7+0)z0 b+o) -0l32'0 " " " ·~e. a a a exp JU
m (OA. 10m ) ~ 7 0 -013 )'0
a a a

21Dysthe has presented a special case of this result in which he has

pointed out that the terms involving ov 10k represent the effects of
""<X ~

dispersion in the medium. The right hand side of (3.77) accounts for

self-action effects and the coupling of a with other modes.
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3.6 Outline of the Averaged-Lagrangian Method

At this point, all of the basic concepts and procedures in the

averaged-Lagrangian analysis have been introduced. They have already

been applied to obtain standard forms for the equations of wave evolu­

tion, in certain cases of fundamental interest. It is now possible to

systematize the approach. The steps of the method are stated below,

where they are ordered in such a way as to ensure both efficiency and

broad applicability. A flow chart of the entire analysis is shown in

Fig. 3.4.
The given information is a Lagrangian density, ! in phase space

or positional space only; the absence of velocity coordinates does not

change the analysis, except to eliminate the averaging over v

1. Dual Expansion of £

(1.1) Choose a convenient reference state, defined by parame­

ters which change only on the slow scale in position and time, and

which differ from the true parameters of the medium only by small

perturbation components. In some cases, the choice of reference

state is a matter of taste. In others, it is dictated by the prob­

lem.

from the reference state.

(1.2 ) Expand f h b (q i}in joint powers 0 t e pertur ations,
iii

substitution q ~ + qo

evaluate, in algebraic form, the terms

where subscripts m and n indicate

f ( ai}powers 0 the wave components, ~ ,and background components,

(q~} ,respectively. In any tractable problem, it will be suffi­

cient to evaluate the expansion terms only for the lower values of

m and n

(1.3) From !2 (= Z!2 ) ,obtain the Euler-Lagrange equa-
i n ,n

tions for the (~) ,and solve to determine the dispersion rela-

tions and the small-signal relations between wave parameters:

D (m ,k 'qoi,Ex,Et) = 0 ,
11 11 ~11 ~

Ai i( i ) Aq = em,k ,qo ' v, EX, Eta
11 11 11 ~ ~ ~ 11
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RELATIONS

BACKGROUND KINETIC EQUATIONS

~
I RPA I

II
ORDERING

EQUATIO:-lS FOR BACKGROU~'D EVOLUTION RELATIONS

t t t
I VARIATION OF SLOW COMPONENTS I

I I I
I TRIAL EXPANSION OF i b

I I I
£ = £0 + 12 + !7. + ... CONSISTENCY

.J . CHECK

I I
I TRIAL EXPANSION OF r'

I I
I VARIATION OF WAVE COMPONENTS I

t +
EQUATIONS FOR EVOLUTION OF DISCRETE WAVES f----

ORDERING
RELATIONS

II
I RPA I

~
WAVE KINETIC EQUATIONS

Fig. 3.4 Flow chart for the averaged-Lagrangian analysis. From a
trial approximation to f, the wave and background equations
are obtained separately by the variation of the corresponding
parameters, in keeping with the averaged Hamilton's principle.
The equations establish the order of the variables in terms
of the characteristic small quantity, E, and the ordering
relations determine whether or not the trial approximation is
self-consistent. The process is repeated until a self­
consistent approximation is found. Application of the RPA,
to the equations for monochromatic waves, yields the kinetic
equations, which describe a weakly turbulent medium.
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limited space-time

sions for the terms

is a convenient amplitude parameter for Wave 'I)

are the mode structure coefficients.

where a
.'1)

the [cl.}
'I)

(1.4) Employ the small-signal

(bar) averaging,

(i =.~!}m n m,n

, and

relations, together with a

to find the explicit expres­

, where

! - 01 -

,

1-2 = ". A. a a exp -28 .£J 'I) 'I) -'I) 'l)l.
'I)

and

"£ - = " (A _tvI'l. a_ aA •••a exp j BetvI'l. + c. C )m £J ""t-' •••m a I-' m ""t-' •••m
sync

a(3 •• •m

for m>2 The coefficients [A.0f3 ••• ((J.)a,~,(J.)(3,~,.•. ,~,E~,Et)}

are determined in the averaging process.

2. Background Analysis.

(2.1) Make an approximation to 1- ,which describes the

lowest-order wave-background interaction effects. To do this, use

-b "1- ~ L..i
n

(£0 +12 ),n ,n

and simplify this approximation further, by dropping all but a few

of the terms in the secondary expansion. Those retained must corre-

spond to low values of n From the trial approximation, obtain

the Euler-Lagrange equations for the [q;(~,Ex,Et)} ,and from

these and the ordering rule

Aa ,..., E
'I)
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find the positive integers, (~(i)} , such that

~(i)
E

If the approximation is consistent, these ordering relations will
-b

show that the terms neglected in the trial approximation to ~

make a negligible contribution to the equations. If this is not

the case, make a new trial approximation, and repeat the process

until a self-consistent approximation is found. The result will

be the lowest order background equations, plus a consistent set of

ordering relations.

(2.2) Obtain higher order background equations from more
-b

accurate approximations to ~ The joint interactions of N

waves with the background are accounted for by the approximation

N

,£b """ ~O + L: ~m
m=2

in which each term is expressed to the same order in E , by means

of a truncated secondary expansion

!"""'~ +! 1+···m m,O m,

and the operator expansion,

which accounts for the changing wave amplitudes. The subscript, ~,

on an operator indicates that it operates only on a The ordering
~

relations of Step (2.1) are sufficient to establish the length to

which the expansion processes must be carried. From the higher order

approximation to r b
, the background equations are obtained by the

Euler-Lagrange formula, applied separately to each variable,

q~ (i=l, ...M)
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3. Wave Analysis

( l) k h f 1 . of Pw3. Ma e t e orma expanS10n ~ , which does not

depend on the explicit form of!' To account for nonlinear

interactions of N ,and fewer, synchronous waves, use the approxi­

mation

,

in which the terms are expressed in the general forms

! = ~ 15::_rVA a 8A ••• a exp j 58 _rVA + c. c .j ,m L.J ""t-' •••m ex I-' m ""t-' •••m
sync

Of3 •••m

where

- fi 3A_rvA (w ,k ,WA'~' ... h: ""_rvA d v
""t-' ••• ex ""(X I-' I-' ""t-' •••

All terms of
-w
!, are to be expressed to the same order in E , by

means of the operator expansion used previously in Step (2.2).

(3.2) Conduct the formal wave analysis. Using the expanded
=='w

formal expression for!' ,apply the averaged Hamilton's principle
Ato the variation of a single amplitude component, say a-a ,to

obtain an equation for the evolution of sa This equation yields

expressions for the amplitudes of virtual waves, such as s( ) ,
J..L+v+ •••

and these, in turn, are to be used to express the equation for

8a exclusively in terms of the other propagating waves ~,y,5, ...

This done, use the appropriate permutations of subscripts (indicated

by alternative forms of the synchronism condition) to obtain a com­

plete set of coupled-mode equations. The coefficients of these equa­

tions are expressed in general form, in terms of the A's and their

derivatives. Note that although this step may be quite involved, it

need be followed only once for a particular type of interaction, as
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characterized by the synchronism conditions. From the general solu-
'"tion, one may obtain many specific solutions by evaluating the A'S.

(3.3) Choose a convenient reference state. If the state

chosen is that of Step 1, proceed with the subsequent steps. If the

reference state is to be changed (for instance to one in which all
i(qO} are zero), then ! ,and the A's must be re-evaluated.

(3.4) Integrate ! over the velocity coordinate, if it is

used in the description of the medium, to obtain the expansion terms

(1m n} and the corresponding ~'s in explicit form.,
(3.5) Determine the wave coupling parameters by substituting

the specific form for the A's into the general form of the equa­

tions found in Step (3.2). In doing so, express each term in the

equations to the same order in E , by employing the ordering rela­

tions, and the dual expansion

);: := " );:-~ . . . L..J -~ ... ,n
n

to account for the effects of the background perturbations, (q~}

(3.6) Describe the evolution of the frequencies and wave­

numbers. The equations obtained in Step (3.2) describe the evolu-

tion of the (a (EX,Et)} The wave analysis must be completed by
TI '"

equations which describe the evolution of the (ill} and (k}
TI -T1

The needed equations are simply

D (,,, k i )UJ, , qo ' E~, EtTI TI "'T1 .-
0, v := (~ 10k)

"'T1 TI "'T1

where v , the group velocity, is the velocity of a nearly mono--T1
chromatic wavepacket. The evolution of ill and k is determined

TI -T1
by tracing the wavepacket, in accordance with the above equations.

When it is applicable, the averaged-Lagrangian method is sufficient

to yield a complete set of equations for nonlinear wave and background

evolution in the weak-coupling limit. The method, as it is outlined
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above, pertains only to monochromatic waves. However, the equations

may be modified to account for a continuous wave spectrum, by means of

the RPA (random-phase approximation), to be described in the next

section. For this reason, the application of the RPA has been shown in

Fig. 3.4. The limits on the applicability of the averaged-Lagrangian

method have already been established through the theoretical develop­

ment of this section. They will be reviewed at the beginning of

Section 5, which is primarily concerned with the applicability and

capabilities of the averaged-Lagrangian approach.
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4. APPLICATIONS

In this section,the Lagrangian method will be applied to two non­

linear plasma models. In the first, the plasma is treated in the hydro­

dynamic approximation. In the second, it is described statistically by

a distribution function f(v,x,t) In these applications, both wave....., .....,

and background perturbations will be taken into account.

For other applications, the reader may refer to earlier work by the

author, in which more restrictive, but similar, methods have been applied

to wave-wave interactions only.22-24 That work was based on the three­

wave action-transfer relations introduced in Section 3.5.1, and the

applications were restricted accordingly. In one of these early appli­

cations,23 the general formula for the wave coupling coefficients was

derived for three electromagnetic waves propagating at arbitrary angles

in a cold, homogeneous magnetoplasma with negligible ion motion. Be­

cause of their complexity, these coefficients had been previously found

only in special cases.

4.1 Ion-acoustic Waves in a Plasma

The first application of the averaged-Lagrangian method is to a

plasma in which ion-acoustic waves are propagating. These waves are

analogous to acoustic waves in a neutral gas. In the ion-acoustic mode,

the wave periods are long enough to ensure that the electron and ion

charge densities are equalized by electrostatic forces. Here we shall

assume that the particles are singly ionized, so that the electron and

ion densities are equal. We shall also assume that T.« T ,where
1 e

T. and T are the ion and electron temperatures, respectively. In
1 e

this case, Landau damping of the waves is negligible, and in the hydro-

dynamic model, the pressure effects are contributed primarily by the

electrons, and the inertial effects are contributed primarily by the

ions. We shall assume that three discrete, synchronous, ion-acoustic

waves are propagating collinearly in the plasma. First, ewe shall apply

the averaged-Lagrangian method to obtain the interaction equations;
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then we shall further simplify the equations by means of additional

physical assumptions. Finally, we shall state an analytic solution

for that special case.

4.1.1 Formal Lagrangian Description

In this analysis, it is convenient to choose an equilibrium state

as the reference state for the perturbation expansion of! The

state chosen is homogeneous; it has a charged particle density

nO' electron temperature TO' and electron pressure PO' related

by

(4.1)

where K is Boltzmann's constant. The symbols n , and P will

denote the perturbed particle density and electron pressure, respectively,

and v will denote the perturbed velocity. The treatment is one dimen­

sional, so that these parameters are scalar functions of time, t , and

position, z measured in the direction of propagation. The Lagrangian

density for the system may be obtained through the classical identifica­

tion of ! with ,gr-~ where ~ is the potential energy density gained

from work done against electron pressure. The total Lagrangian has been

obtained from this prescription by Dysthe. 48 It is

f.<1< ~f[~ Mnv
2

+nOj P d(~)]d' (4.2)

nO
where M is the ion mass and the integration is over the volume of the

system. We must now express this integral in terms of one or more inde­

pendent generalized variables. To this end, let z denote the par-
p

tic1e position, and let zp = z + ~(z,t) ,so that v = o~fdt The

total Lagrangian is then

,



U(n)

where

n

nO f P d(l/n)

nO

One may now make use of the fact that ndT = nodTo
nJdT

o
,where the

Jacobian, J ,is (1 + c~/cz) This yields

J: = 1 Mn (c~)2_U ( no ) (4.5)
2 0 dt 1 + c~/cz

The adiabatic gas law is used for perturbations about equilibrium. Thus

Pn- 7 P n- 7
o 0

Neglecting terms with no dependence on n ,one obtains

(4.6 )'

U(n)

and an expansion in powers of c~/cz yields

(4.8 )

Constant terms which depend only on the reference state parameters have

been omitted in this expansion. The Lagrangian may now be expanded in

powers of the displacement, ~ , to yield the series J: = £(0)+J:(1)+J:(3)+ ...

The term .1:(0) is irrelevant to the Lagrangian analysis, and so is .1:(1)

in this case, since the reference state is an exact solution. The first

two relevant terms of the series are consequently

and
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From these, we may construct the dual expansion by substituting

~O + ~w for ~ We make a trial approximation to £ by retaining

only a few of the lowest order terms in this expansion. The first trial

approximation is

(4.10)

in which

£0 £0 2
MnO(°'0f _nOKTY (O'of::::::: , 2 dt 2 dZ

2 noKTy C'w)2+ noKTy( y+1)(°'0) (O'wf£2 12 0 + £2 1
Mnoe'w)::::::: , , 2 dt 2 dZ 2 dZ dZ

(4.11)

The approximation (4.10) (4.11) is reasonable because £2,0 and £0,2

are the terms which govern the independent wave and background behavior,

£3,0 is the first term in the dual expansion which gives. rise to coup­

ling between wave components, and £2 1 is the first term which gives,
rise to coupling between the wave and background components. In order

to see whether this is a valid approximation, we must proceed with the

analysis up to the derivation of the background equations of motion.

This will indicate the order of ~O with respect to E and we may

check to see if the approximation is self-consistent up to the desired

order in E

We shall now simplify £ by means of the small-signal relations.

To obtain these relations, we use the assumed form of ~w

~w := E (~T) exp jeT) + ~-T) exp -jeT))
T)
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When this is substituted into the trial approximation for £2 ' the

result is

.1:2 ~LA € € (4.13 )
1') 11 -1')

1')

where

A ~ Mn {(J)2 - C; [1 - (7+1) G~O)]k~J (4.14)
T) 0 T)

and

C
s

== (~Tr/2 (4.15)

When this expression for .1:
2

is used in the averaged-Hamilton's princi­

pI:, and ~-T) is varied, the corresponding Euler-Lagrange equation is

AT)~T) = 0 ,and this may be solved for the small-signal relations. For

this problem the only such relation is the dispersion relation A1') = 0

or

(4.16 )

If there had been more than one total perturbation variable in this

and requiring that, for each component,

problem, AT) would have been

would have included relations

m
T)

find that for the first trial approximation

a tensor, and the small-signal relations

between the mode variables, qi = ci a
• T) T) T)

These would be used to express .1:
2

in terms of the (q~} and one

scalar parameter for each wave component. In this instance, however,

the only total perturbation variable is the scalar, S We express

.I: in the desired form merely by using the form for ~ given by (4.12),
w

and kT) satisfy (4.16). We

:E .trlal =

(4.17)
A A At ,. to exp j 58 r>a. +
-a~t3 ~)' -'-"1-' )'

c.c.)
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where A~ is defined in (4.14), and

(4.18 )

This completes Step 1 of the Lagrangian method, for the first trial

approximation.

4.1.2 Equations of Background Evolution

In this analysis, we wish to describe the wave-background inter-

action only to lowest order in E

trial approximation

For this, it suffices to use the

that is

. (4.19)

This expression is the same as that for ! ,except that terms which do

not involve ~O have been dropped. In this approximation, the Eu1er­

Lagrange equation for ~O is

( d2~0) _ c2 (d2~0) + 2()'+1)c2~ k2 ~ I~ /2 = 0 (4.20)
dt2 s dZ2 s~ ~ OZ ~

~

ORDERING RELATIONS: from Section 3 we have the ordering rules

(~ = CX,t3,)') ,
(4.21 )

(I-l = 0 ,et ,t3 , )')

When these are used to order the terms of (4.20) with respect to E

the result is

,

(4.22 )
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CONSISTENCY CHECK: the ordering relations (4.21) - (4.22) show that

the original trial approximation is inconsistent; the terms £0 2 and

£2 1 are of O(E
4) ,and, if the approximation is to be consi~tent to,

that order, the term £4 0 must be included in the approximation also,,
i.e., four-wave effects must be considered. However, in this example,

only three-wave effects will be considered, and ! will be expanded

only through order E3 For this example, then, the valid approxi-

mation for £ through O(E3) is

where

[ 2 2 2]A ::::::MnOCD -c k
~ ~ s ~

(4.24)

In this approximation, the wave components interact only with one another.

They are independent of any background fluctuations, which are negligible.

For this example, then, we need to analyze only the wave behavior.

4.1.3 Equations of Wave Evolution

In the approximation (4.23) it is understood that all terms are to

be expanded through O(E3) by means of the formal expansion procedure

of (2.30). The result is just a special case of (3.44) yielding

-w
! =

+ :L: (A-a(ly e-a e~ ey exp joe_Olly + coc-)
sync
af3)'

88

(4.25)



The term A~~~f_~ does not appear in the expansion because we choose

m and k to be solutions of the dispersion relation, i.e., they are
~ ~ -w

chosen such that A~ is zero. For the form of ! given above, the

formal analysis has already been carried out in Section 3.5, and the

equations of motion are the one-dimensional limit of (3.46), with the

normalized variables and coupling coefficients given by (3.47) and the

expressions for the A's in (4.24). Specifically, we have

, (4.26 )

in which, for ~ = a,~,y

A 1/2 A

A = (2MnOm ) ~
~ ~ ~

,

v = ± c
~ s

x = -j (4.27)

This completes the derivation of the interaction equations by the

averaged-Lagrangian method. For the case y = 1 ,the equations have

been obtained previously by Ohnuma and Ratta, who employed an itera­

tive analysis. 49

4.1.4 Solution Procedure

By means of additional physical and mathematical assumptions, it is

possible to simplify the interaction equations to a form for which analy­

tic solutions are known. First, we shall represent the complex wave

amplitudes in terms of real quantities ~} , and {~~} , such that

A

A =Jt. exp H
~.~ T]

IA 1
~

(~=CX,~ ,y ) , (4.28)



The real, normalized wave parameters, (A) ,are thus given by
11

A =A exp je + C.c. =Jt [exp j(e +~ ) + c.c.]
11 11 11 11 1111

(4.29)

All information about the phases of the waves may thus be accounted for

by the sums (e +~ ) Because the background inhomogeneity is neg1i-
11 11

gib1e for this problem, the (e) have the form
11

e = [m t - k z + ~/(EZ,Et)]
11 11 11 11

in which the (~/} are real quantities. We shall stipulate that
11

(4·30)

~' - 0
11

for the rest of this analysis. This causes no loss of generality in the·

application of the interaction equations (4.26), since any slow-scale

changes in the relative phases of the waves may still be accounted for

by the (.11) of (4.28) - (4.29)· Now we shall restrict consideration

to a relatively simple problem, in which the waves are excited by a

continuous oscillation of the displacement, t ,at z = 0

conditions are assumed to be

A(O,t) = l:A110 exp j(m
11

t + ~110) + c.c.

11

,

The boundary

where the (JI O) , (~ 0)' and (m) are specified constants, and
11·1111

0<~0<27T
- 11

The boundary conditions (4.32) - (4.34) imply that the wave parameters
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change only according to the distance z from the source of excitation,

i.e. ,

<I> = <I> (EZ)
1) TJ

We are considering waves which propagate away from the source, so that

ro = c k (1)~,~,Y) Thus, (4.33) is sufficient to ensure that the
1) s TJ

rols and k's are in synchronism for all z This fact, together

with (4.31) and (4.27), implies that

Be = 0-Qj3y

where Ixl is a constant.

When the interaction equations (4.26) are expressed in the nota­

tion of (4.28) - (4.29), they may be simplified for the problem at hand

by means of (4.35) - (4.36). The real and imaginary parts of the equa­

tions may then be separated, to produce the four equations

°A _illAA sin ¢
~ a c ~ ys

0 ill
a;:A~ .c d)'Aa sin ¢

s

0 illa;:A)' = c A~Aa sin <I> ,
s

(4·37)

(4·38)

where

<I> = ~ + <I> - <I> + li
~ )' a 2

Equation (4.40) may be integrated to show that

cos ¢ , (4.40)

(4.41)
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where the constant, r , is determined by the boundary conditions.

Another set of constants is obtained by integrating the Manley-Rowe rela­

tions, which we obtain from (4.37) - (4.39) in the manne·r of Section 3.5.1.
The result is

where

NI"\I + N = M
'"'" Y 2

,

N =~2 = ~ = {action density}
1') 1') ill of Wave 1')

1')

(4.44)

and M
1

' M
2

' and M
3

are constants. The conservation relations may be

used together with (4.37) (4.40) to obtain an equation which involves

only Na as a variable. This is

~N
dZ a

IXI[ 2 1/2- 2~ N (M -N )(M -N )-r]
cal a 2 a

s

the solution to which is

(4.46)

where sn{J..l1 m) is a Jacobian Elliptic function, with argument J..l and

parameter m The constants, N
1

' N2 , and N
3

, are the three solu-

tions of

(4.47)

ordered such that

(4.48)

92



The parameter m is given by

and the constant Zo is chosen so that Na has the correct value at

z = 0

{
X 1/2} (N (0 )-N l)1/2sn - - (N -N) z / m = -=----.;;;a

c 3 1 0 N -N
s 2 1

4.1.5 Interpretation of the Solution

(4.50)

For the steps leading from (4.45) to the solution, (4.46), the

reader is referred to an earlier exposition by Sagdeev and Galeev. 13

Here, we shall merely discuss some characteristics of the solution.

It appears that a solution of the form to be described was first ob­

tained for coupled modes of oscillation by Armstrong et al in 1962. 47

The function sn(~/m) may be defined mathematically in terms of

an elliptic integral:

~ " / -(-1-_-m-d-s:-n~2-e-:/=-1=2
o

With this definition of ~ sn(~/m) is defined as sin W ,and for

real ~ it oscillates between 1 and ~l with a quarter period

7T!.2

K(m) =[
(1

o
. 2e)1/2- m s~n

We have, for any m ,the identities

sn(2nK(m)/m} = 0 sn((2n+l)K(m)/m} = (_l)n ,

where n is any integer. The parameters of the solution (4.46) depend

on the boundary conditions for the waves, which define r, N
l

' N
2

'

N3 ' m, and Zo Let us consider the solutions in the special case

r = 0 ,in the manner of Sagdeev and Galeev. 13 Suppose that at z = 0
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we have

2
N (O)NR(O)N (0) cos ~ = 0

0: I-' Y
(4.54)

This can occur if the amplitude of one of the waves is zero at the source,

or if ~(O) = (n+lj2)w ,where n is an integer. Since r is a con­

stant of the motion, the problem is the same in either case. Suppose that

Ny(O) = 0 , No:(O) f 0 and N
13

(O) f 0 As soon as nonlinear interaction

makes N (z) finite ~(z) must be frozen at (n+lj2)w in order to keep
y

r equal to zero. Now it may be seen from the definition (3.62), that the

coupling energy of the energy transfer relation, (3.65), is a maximum for

any given wave amplitudes if ~ = (n+lj2)W ; so the case we are consider­

ing is the one which leads to the maximum rate of action transfer between

the modes. The condition r = 0 (for all z ) shows that Wave y, starti!1g

with zero amplitude, initially grows in space with a phase ~ such that
)'

~)' + ~13 - ~o: + ¥= (n+lj2)W : it adjusts its relative phase to ensure the

maximum growth rate. Now we have not yet specified any relation between

N
13

and No: It turns out that the solutions divide into two classes,

depending on whether No: ,the action density of the higher frequency

wave, is greater or less than N
13

We shall examine a particular case

of each type:

CASE A: consider the problem specified by the boundary conditions

N (0) = 0
y

The condition that one wave is much larger than the other two waves is

called the parametric limit. In this problem, the parametric limit

obviously obtains near z = 0 ,and we shall see that, for this case,

it obtains for all z The large amplitude wave 13 (the 'pump')

exchanges e~ergy with wave a (the 'signal') and wave y (the 'idler').

For the boundary conditions (4.55) the parameters of the solution are



Na (0)+ Na(O)

N/J(O)

Fig. 4.1 Solution, in Case A, for three coupled ion-acoustic waves,
propagating away from a constant, planar, source.

Na (O)+N/J(O)

NalO)

N~ (z)

N~(O) Nylz)
L.-ot:.....J... ......:~....;:;:..-----......:::::::..-'-.c::::---_z

o

Fig. 4.2 Solution, in Case B, for three coupled ion-acoustic waves,
propagating away from a constant, planar, source.
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given by (4.47) through (4.50)

r 0 N1 0

No; (0)
~Om =

N
13

(O) + Nc/O)

7f
KR:i2' Z ~ 0 (4.56)o

The solution for No;(Z) is sketched in Fig. 4.1, as are the curves for

N
13

(Z) and N/(Z) These are obtained from the boundary conditions

and No; by means of the Manley-Rowe relations (4.43). They are

N
13

(Z)

and

N (z)
/

Note that the solutions for No:, N
13

'

has the same period, Z ,given by
p

and N are all periodic. Each
/

Z
P

The magnitude of the wave interaction in Case A is limited; the

pump never loses an appreciable fraction of its initial action density.

This is guaranteed by the boundary conditions (4.55) and the Manley-Rowe

relations (4.43), and is made obvious by Fig. 4.1. In Case A, therefore,

the parametric limit holds for all Z

CASE B: consider the problem specified by the boundary conditions

N (0) = 0
/

(4.60)

Again, the parametric approximation holds near Z = 0 ,but the Man1ey­

Rowe relations no longer prevent No; from becoming significantly smaller
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than its initial value, even to the point of becoming zero. The parame­

ters of the solution for No: are

r = 0

(4.61)
No:(O)

m = ~ 1
Na(O) + N

t3
(0)

The values of Na and N are determined from N by (4.57) -
~ y a

(4.58). The solutions for the three waves are sketched in Fig. 4.2.
Note that they are periodic in z, with a period, Z ,given by

p

(4.62 )

In this case, Wave a which is initially the pump, decreases in ampli­

tude with z until all its energy has been transferred to Waves t3 and

y At some point, say B on the figure, N has decreased so mucha
that the parametric approximation is no longer valid: the pump ampli-

tude may no longer be considered a constant in z The boundary condi-

tions of this case are well suited to the purpose of amplification. We

see that if the high frequency wave is externally excited to a high

amplitude, it can transfer a significant fraction of its energy to a

signal wave, which is externally excited at a low level.

The interval [A,B] in Fig. 4.2 is the one in which a direct parame-

tric analysis is valid. Throughout this interval, N
a

» N
t3

,N
y

The

pump, Wave a ,is essentially constant in amplitude and phase. Conse­

quently, we may solve the two equations

dAt3 X ,,* "
j ~z = - A A (4.63)

o c Y a
"-g

dA
j -1. = ~ 'A.* 'A.

dZ c t3 0:
s
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in which Aa is a constant. These equations follow fro~ the boundary

conditions and (3.56). From (4.63) - (4.64) we obtain

?l'" Ixl 2
'"~ IAa /

2 (4.65)
2lz2 -2- Af3

c
s

and

2l2;. Ixl 2

IAI 2--.:l. '" (4.66)== A
2lz2 2 1 a

cs

'" '"Equations (4.65) - (4.66) obviously have solutions for Af3 and Ay
which vary exponentially exp ±yz ,where Y ,the parametric growth

rate, is Ix! Ilc . The more complete solution to this subsection indi-a s
cates that the exponential solution is an approximation to the behavior

of the curves in the region AB of Fig. 4.2. Parametric amplifiers

operate within that region. The signal and pump are externally excited;

the idler is generally allowed to grow from noise.

4.1.6 Discussion

The problem solved in this subsection is a rather restrictive one:

a one-dimensional boundary value problem in which only three discrete

waves are excited and the background perturbations are negligible. The

small-signal propagation parameters {m} and {k} are real, and the
T] T]

medium is homogeneous, so that the coupling coefficient, X ,is a real

constant. In this case it has been possible to obtain an analytic solu­

tion, but the analysis was by no means simple. The general three-wave

interaction equations (3.46) are even more complicated, and to this

author's knowledge, no general analytic solution to them is known, even

when background perturbations are negligible.

The averaged-Lagrangian method was not intended to eliminate all

these complexities. It is an efficient, unified method for obtaining

the interaction equations and their parameters, and it led to the con­

venient general form for the equations of wave evolution, that was used



in this example. The averaged-Lagrangian method generates the inter­

action equations; solution of these equations is a process which has

been outlined here in order to illustrate the other aspects of nonlinear

analysis.

4.2 Electrostatic Waves in a Vlasov Plasma

Our second application of the averaged-Lagrangian method is to a

plasma which is described by the Vlasov equation and Maxwell's equations.

In this subsection, an appropriate Lagrangian is stated and interpreted,

then used in conjunction with the averaged-Lagrangian method to obtain

equations for the evolution of four discrete electrostatic waves and the

plasma background. The analysis allows for fluctuations in one spatial

dimension only; it is quasistatic in the sense that perturbations in

the magnetic field are neglected.

After the interaction equations are obtained, they are transformed

to describe the evolution of a spectrum of interacting waves and the

plasma background. The equations are simplified by means of additional

physical assumptions, including the random-phase approximation, commonly

used in weak turbulence theory. The resulting equations are shown to be

equivalent, in the appropriate order of approximation, to the wave and

particle kinetic equations, as they appear in the literature of weak

plasma turbulence.

4.2.1 The Plasma

In the Vlasov description of a plasma, particle collisions are neg­

lected, and the state of the charged particles of species s is defined

by a distribution function in phase space, F (v,x,t) The definitions ~ ~

is such that

n =f2v Fs s (4.67)

where the integration is over all velocity space, and n is the particle
s

density for the species. The electromagnetic state of the system is given
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by the vector fields E and B ,or the corresponding potentials

cp and A

It is convenient to describe the plasma with the following dimen­

sionless parameters, since the normalization is with respect to standard

plasma parameters, and no physical constants then appear in the equa-

tions of motion

qo§ = qo~ v (1)0~
E' H' V X T (1)ot- , =- = --

cmO(1)O mO(1)O c c

(4.68)

qoCi' qoA m qs n cf
s s =__s

¢' =--2- A I =--:::::. M =- , Q=- N =- F
moc s m

o s qo s nO s nOmOc

The quantities on the right hand sides of these equations are in ratio-

na1ized MKS units, and the normalization is with respect to a density

nO ,of reference particles of charge qo ,and mass mO . The
2 1/2

quantity (1)0 is the reference plasma frequency (noqo/EOmO) and

c is the speed of light in vacuum. Henceforth, only the dimensionless

variables will be used in the analysis. Therefore, the primes on the

normalized electromagnetic field quantities may be dropped without

causing confusion. We may obtain the electric and magnetic fields from

the vector and scalar potentials according to the equations

E
cA

-V'<i> - ct H V' X A

Use of these potentials guarantees that two of the four Maxwell equations

in E and H are satisfied. The remaining Maxwell equations and the

V1asov equation are

V' X g
cE
~

V dV + CT V'.E=~QN
~ L..J s s

s
(4.70)

CF Q
s sCT + V • V'F s + M (§ + YX g) . V'~ s

s

where the summations are over particle species.
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4.2.2 The Plasma Lagrangian

To apply the averaged-Lagrangian method, we must have a Lagrangian

density which yields equations of motion which are equivalent, but not

necessarily identical, to those of (4.70). A suitable expression for
27the plasma Lagrangian was established independently in papers by Low

and Sturrock50 in 1958. In both analyses, the desired Lagrangian was

obtained by combining the well-known Lagrangians for (a) the electro­

magnetic fields, and (b) a charged particle moving in specified elec­

tromagnetic fields. Also, both analyses describe the state of the plasma

particles by means of perturbation variables which correspond to the

displacements of particle cells in phase space. Strictly speaking,

Sturrock's analysis was limited to a single plasma stream; however,

through integration over a continuum of streams, his expressions lead

directly to the correct Lagrangian for a Vlasov plasma. Sturrock's

Lagrangian analysis was carried out in relativistically covariant form,

and he went on to apply his Lagrangian to derive energy-momentum stress

relations of the type discussed previously - in the classical 1 imi t -

in Section 3. Low, using a classical analysis, carried out the inte­

gration over particle velocity distributions in such a manner that all

field and particle components are referred to a common reference frame

(Y,!,T) . However, in doing so, Low imposed certain constraints on his

variables which were unnecessarily restrictive and which led to diffi­

culties in physical interpretation. In 1971, this author and H. Kim
21

presented an alternative derivation of the Low Lagrangian which avoided

the difficulties associated with the original analysis, and it is upon

this basis that the plasma Lagrangian will be employed here. The deriva­

tion will not be repeated; the result will simply be stated and inter­

preted.

one for each species, s, and fields

The reference state is described by distribution functions [F },
sr

We shall requirecI? and A
r -r

that these correspond to some exact solution to the Maxwell-Vlasov

equations, which fluctuates with x.... and T only on the slow scale. The

variables in £ are the field perturbations,! and !, and 'dis­

placement vectors', (~ ) , which represent displacements of cells in
-s

phase space, as illustrated in Fig. 4.3 for a single particle species.
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in phase space at (y/, 1£') at time T ,The figure shows a cell, a
p

following a trajectory in phase space in the presence of a perturbed

field. If the perturbation were absent, the particles would be in the

reference cell a at position (V,X) at the same instant of time.
r ' ............

The perturbed position of the cell is obtained from the displacement

~(y,!,T) according to

y' = ~ + ~

v

K;...---------------------------~xo

Fig. 4.3 Definition of the displacement variable, ~(~,~,T). In the

presence of perturbations, a particle cell, a, follows the
p

trajectory in phase space indicated by the broken lines.

If the perturbations were not present, the particles of

would be in the reference cell,

cell is 6.

time. The

a, at the same instant of
r

positional displacement of a from the reference
p •

The velocity displacement is 6.
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The dot operator in this equation is defined by

, (4.72)

in which ~r is the acceleration of a particle at (y,~) in the

reference state.

The boundary of the perturbed cell is defined by a one-to-one

matching of particles with their virtual positions in the unperturbed

cell, ~r Since there are no particle collisions, both cells con­

tain the same constant number of particles as they travel through phase

space, and this number is equal to both

f Fr d3v d3X, and IFpd3V' d3X'
.~ ~

r p

where F and F are the unperturbed and perturbed distribution
r p

functions, respectively. Over sufficiently small cells, F and F
r p

have negligible fluctuations, so particle conservation and the defini-

tion of the perturbed cell imply that

Therefore

F (V' X' T)P ~ ,~ ,

where $ is the Jacobian,

, (4.74)

$ == o(y' ,~' )

o(V,X)
~ ~

Using these definitions, one may write the Lagrangian for a mu1ti­

species V1asov plasma in the form

L =fd3X d3V l'I'(V)!f +~ F (V,x,T)!plt~ ~ ~ sr ~ ~ sJ
s
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are Lagrangian densities associated withs

w(Y) is any well­

behaved function of V which approaches zero as Iyl ~ ~ and which has

the property that ~W(Y)d3V = 1 The functional forms of !~ and !f

where F is the reference distribution function for particle species
sr

the terms (!p} and !f
s

the particle and field behavior, respectively, and

are

,pM ·2 [ . ].r == -2 (V+t:.) - Q <lJ + <lJ - (V+A ). (A +A)s ~ ~s r ~ ~s ~r ~

f 1( d~r dA )2 1 2! == - \7<lJ + - + \7<lJ + - - - ('l/XA + \7xA)2 r dT dT 2 ~r ~
,

(4.77)

(4.78)

in which the subscript r denotes reference state quantities. Field

quantities in !p are to be evaluated at (v+A X+A T) all others ~ ~s'~ ~s'

quantities indicated above are evaluated at (y,~,T) For the deriva-

tion of (4.76) - (4.78) the reader is referred to reference 24.
From (4.76) it is clear that the Lagrangian density for the plasma

is

! = W!f(<lJ,A) +~F Sl(<lJ,A,6o)
~ ~ sr s ~ ~s

s

in which the dependent variables are the perturbations ~,~ and (A} .
~ ~s

The independent variables, y, ~, and T ,may be treated as Eulerian

coordinates. The Lagrangian density (4.79) generates equations for ~,

A and ~ which are equivalent to the Maxwell-Vlasov equations (4.70),
provided that the reference state parameters are consistent with the

assumptions used in the derivation of L: i.e., the (F ), ~ ,and Asr r ~r

must satisfy the equations (4.70) exactly. In reference 24, this asser-

tion was verified directly in the linear limit. The two sets of equa­

tions were linearized in the perturbation variables, and the resulting

equations were shown to be equivalent through a transformation of vari­

ables. There has been no attempt to verify the equivalence of the

equations for each higher (nonlinear) order of approximation. The asser­

tion that they are equivalent in their physical implications is based on

the arguments used to obtain the Lagrangian.
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The expression for L in (4.79) is just that obtained by Low.

However, Low was in error in his interpretation of the displacement

coordinate 6. and this affected his transformation from the displace-

ment description of the plasma particles to the Vlasov description. In

that description, the state of a particle species may be given by Fr + F&'

where Fe(y,~,T) is the perturbation of the distribution function, defined

by

F (V,X,T) =F~(V,X,T) + F (V,X,T)
pur

(4.80)

The transformation of coordinates will be denoted symbolically by [~~ Fe]'

Low's interpretation led to an unnecessary "consistency condition" on 6.

and to a formula for [~~ Fe] which is not correct in general. In our

example, the perturbation of the plasma background by the waves will be

studied, so the correct transformation will be needed in order to calcu-

The necessary equation is developed below after the mannerlate F
P

of reference 24. Certain authors, using a quantum mechanical approach,

have employed the Low results without qualification in the analysis of

nonlinear plasma waves. 30 ,5 l -53 However, it appears that in this work

Low's "consistency condition" has not been imposed, and the interaction

equations have been expressed in the electromagnetic field quantities

only. The perturbation of the plasma distribution function was not

studied, so Low's version of [~~ Fe] was not used, and no errors were

introduced.

4.2.3 The Perturbed Distribution Function

Let us now consider the equations for the transformation [~~ Fe] .

The analysis is restricted to one spatial dimension because this simpli­

fies the presentation, and because the results adequately describe the

example considered later in this section. In this case, the coordinates,

V, X, and T ,and the displacement variable, 6.(V,X,T) may be treated

as scalars. To find F ,we employ the definition of the perturbed cell,

which implies

F (V,X,T)dXdV
r

105

(4.81)



X' == x + /).

and

(1 + (:A/?Jx)

(?JA/?JX)

Equations (4.81) and (4.83) imply that

v' == v + 1.1

(?JtJ./?Jv)

(1 + ?JA/?JV)

(4.82)

+ (higher order terms)

(4.84)

In this and the subsequent equations, all quantities and their deriva­

tives are evaluated at (V,X,T) unless otherwise indicated. For com­

parison with the above expression, we have the result of a direct Taylor

expansion of F

+ (higher order terms)

2
1 2?J

+ - /). - F
2 ?JX2 r

F (v' x' T) ==
r ' ,

?J • ?J
Fr + /). ?JX Fr + A ?Jv Fr

.2J2
+A6--F

?Jx?Jv r
(4.85)

An expression for F&(V',X',T) may now be obtained through the use of

(4.84) and (4.85) in the definition (4.80). However, the function of

interest is F&(V'-6., X'-A, T) [==F&(V,X,T)] . This is obtained from

F5(V',X',T) through an additional Taylor expansion, and the resulting
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formula is

o 0 (. oA ) I 0 (.2 of )
- OV (AFr) + OV I::. dV Fr + 2" OV 6 OVr (4.86)

The terms neglected in this approximation are of the third power, and

higher, in A and its derivatives.

4;2.4 The Problem

For clarity of illustration, we shall apply the averaged-Lagrangian

method to a problem which is defined by much more restrictive assumptions

than those used in the derivation of L Consequently, the warm plasma

Lagrangian will be employed in a simpler, more specialized form. In this

example, we shall assume that (a) the plasma is homogeneous except in one

spatial direction, so there are only three independent scalar coordinates;

V, X, and T; (b) on the slow scale, the plasma is homogeneous in X,

so that the wave parameters are functions of ET only, and the averaged

particle distribution functions (F ) are functions only of V and ETsp
(c) the only significant nonlinear wave interaction process is the four-

wave interaction, characterized by the synchronism conditions (2.37); and

(d) the plasma behavior is adequately described by the Maxwell-Vlasov

equations in the quasistatic limit

F sp ,
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In keeping with these assumptions, the electrostatic Lagrangian

density for this system is obtained from (4.76) by dropping A as a

variable, and specializing the result to the case of one spatial dimen­

sion. The process yields

1
1 . 2 )+ ~ F (V,X,T) -2 [V+A] - ~ (X+A, T) - ~(X+A, T)s sr r

where

~=(.Q..+V-O..- o~r..Q..)1::.
dT ox oX OV

,
(4.88)

For this Lagrangian, the reference state is defined in general by a

potential field, ~ ,and a set of distribution functions (F }sr
however, because of Assumption (b) there can be no static electric

field in the reference state, i.e. ~ is constant in X
r

, and will be

dropped from the analysis.

This analysis will be concerned only with the lower order equations

for wave and background evolution, and interactions of five or more waves

will be neglected. The only terms which will be needed from the expansion

of 5: are

5: (4) = -"-6
1

Q F 1::.3 0
3

r:!) • ( 4.90 )L..J s sr sOx3
s

At this point, the formal Lagrangian description differs from that

of the first example in a matter of technique: different reference states

are adopted for the wave and background analyses, respectively. For the

wave analysis, the reference state is defined by the averaged distribution
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functions (Fw =F } ,while for the background analysis, the refer-sr sp
ence state is chosen to be an exact solution defined by functions

(Fb (V)} ,which are essentially constant in time.
sr

In the wave Lagrangian density, £w ,all slow background fluctua-

tions are absorbed into the reference state, so there are no slow per-

turbation components (AsO } The choice of reference state thus

eliminates the dual character of the expansion for £w and 1w

There is only a single expansion, in joint powers of the wave components

The subsequent wave analysis is simplified accord-(A } and (<I1}
sT) T)

ingly.

In £b, however, a dual expansion is still needed. The small­

signal wave relations are used to express £b to the necessary order

in E Later in the analysis the Euler-Lagrange equations for the

(A
sO

} are used in conjunction with the expression (4.86) for the F
s8

in order to obtain equations for the (F} We then have a completesp
set of interaction equations for the wave and background evolution.

Because the Lagrangian description is different for the wave and

background analyses, the rest of the formal Lagrangian description is

presented in the following two subsections.

4.2.5 Wave Analysis

. (4·91)

, given by

°,°-M A
s s

For the waves, the dual expansion is exactly the same as the simple

perturbation expansion [<I1 = <I1 , A = A , £( ) = £ ] The small-signal
w w m m

equations of motion are the Euler-Lagrange equations of

In keeping with (2.15), we adopt the complex notation

A
s ,

and

" " *<I1 = I: (~ exp j e + <I1 exp - j e )
T) T) T) T) T)
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Substitution of (4.92) - (4.93) into (4.91) produces the small-signal

relations

M (0 - KV)2 &(V) + jKQ $ 0
s s s

- jK$ -~ Q. {6 (V)F (V) dV = 0 . ,L...i sJ' s sp
s

in which 0 denotes o8/0T, and K denotes 08/0 X. The above

equations combine to give the well-known small-signal dispersion relation

for electrostatic waves,5 4

'" Q2 j F (V)
1 - L...i 2. sp dV = 0

s Ms (0 - KV)2

-w
~ssumption (c) implies that £ may be well approximated by S2 + 1,3 +

£4 Use of the small-signal relations in (4.90) allows us to express
~w

1. in the form

+~ [5.::-0f3l ~_a~~~lexp joB_0f3l + c.c.]

sync
Of3l

where

+ .2: f5.::~lO~-a$~¢l<£OexPjOB_0f3lo + c.c.]
sync
~lO

,

2

~ 2 ~fi- QsIe = K - F
~ ~ sp M (0

s s ~

(4·97)

3

~
Qsf-

-K K K - F
a ~ l M2 sp

s s

, f
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and

xfi:J J sp

The wave-wave interaction, corresponding to the problem defined in

Assumptions (a) - (d) of Section 4.2.4, is a special case of the four­

wave interaction considered in Section 3.5.3. Therefore, the equation

for the evolution of any wave component, a ,may be obtained by

appropriately specializing the formal result (3.77). This process

yields

in which

sync
CXf3 )'0

,. ,. ,.
(4.100)

, (4.101)

(4.102)

,

and n. is the imaginary part of n (K) defined by (4.94). The
~1 ~ ~

A's are given by (4.97) - (4.99).
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4.2.6 Background Analysis

-b
For this analysis, we expand ! about a static reference state in

which the particle distribution functions are the set {F
b

(V)} Forsr
now, we shall use the approximation,

This approximation follows from the expansion terms of (4.83), and the

assumption that the slow perturbation components {A
so

} are functions

of V and T only. The small-signal relations for the wave components

are now used to. simplify :cb
further. Use of (4.9'2) - (4.94) in the

above expression transforms it to

-b
!

(4.105)

The corresponding Euler-Lagrange equation for ~so is

:::: 0, (4.106)

and in our ordering scheme this implies

or A ~ Esa (4.107)

For compatibility with the terminology of the preceding section, one may

express the wave parameters of (4.106) in terms of the normalized parame­

ters {A} by means of the definition (4.101).
T)
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Since the system is spatially homogeneous for all T ,the averaged

potential, ~O' is zero. Thus, if the [Fsr } ,the initial state, and

the wave parameters are given, (4.106) fully'describes the evolution of

the plasma background. However, this description of the background

evolution is rather unsatisfactory in two respects. First, for a given

choice of the [Fsr(V)}, the equations are valid only for small [~sO}

These may be made small at T = 0 by the choice of reference state, but

study of (4.106) shows that its solutions may, in general, become quite

large before some steady state is reached. Second, even in the limit of

small [~sO} ,the background equations, taken together with the equa­

tions for the waves (4.100), do not constitute a complete description of

the system: the set of equations is not closed. This is due to the use

of different reference states in the two analyses.

For a complete and more versatile description of the wave-plasma

system, a different form is needed for the equations of background evolu-.

tion. This may be obtained from (4.106) by using the basic properties of

the displacement variables [~}
s

are related to the perturbations

in the plasma Lagrangian. The [~}
s

by (4.86), which closes the set[F }
s

We shall see in the next section that through these rela-of equations.

tions the [~sO} may be eliminated from the new set of equations entirely,

so that the limitations just mentioned no longer apply.

4.2.7 The Interaction Equations

Let us now consider how the wave and background equations may be

written in a closed form. To close the set of equations, it is necessary

to use the background equations (4.106), together with the properties of

the [~) ,in order to obtain an equation for the evolution of thes
[F) These distribution functions completely describe the state ofsp
the plasma background, and once their behavior is specified, the wave

evolution is specified also by (4.100).
Th 1 · b d . of-Pwe wave ana YS1S was ase on an expanS10n ~ through

and an inspection of (4.96) - (4.99) in the light of the ordering rule

reveals that for this level of accuracy the [F } must be
sp

O(E2 ) Equation (4.86) provides a suitable expression

(~ '" E)
T]

described through
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which in this spatially homogeneous system isfor i (=F + i)sp sr s6'

i _ Fb _ .2.- ( d6sO Fb ) + d .(iJ. dAsw Fb ) + 1
sp - sr dV dT"" sr dV sw~ sr 2

(4.108)

is to be expressed in terms of the

The

In this expression, the component A
w

by means of the small-signal relations.wave parameters ($}
Tj

accuracy of this approximation may be verified by means of the ordering

relations (4.107). Use of the small-signal relations in (4.108), followed

by a differentiation of the equation with respect to time yields

(4.109)

Th .),2 A /),T2 b 1·· d f h . . be quant1ty u u
sO

0 may e e 1m1nate rom t 1S equat10n y means

of (4.106). When this is done, it is clear that the second term on the

right hand side of (4.109) partially cancels the first. The equation for

F becomes
s

(4.110 )

where

(4.111)

Even in this form, the background equation is not entirely satisfactory;

it still involves an unspecified reference distribution function, F
b
sr '

and the displacement component, A
sO

' which is not a measurable quantity.
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This difficulty may be overcome by means of a simple device, however.
bWe shall allow F to be slowly time-varying, and consider the
sr

particular limit Fb ~ F ,in which ~sO ~ 0 Thensr' sp

of (OF )~_OD-2E.
OT - dV s OV , (4.112 )

which has the form of a diffusion equation in velocity space. In the

derivation of (4.103) it was assumed that F
b

was essentially constantsr
in time, in the sense that its time derivatives made a negligible contri-

bution to the equations of motion. Now the choice F
b = F is con-sr sp

sistent with that assumption, as one may verify from the ordering rela-

tions

0-3- F ,.., E
OT sp ,

this relation in the pre­

OFb JOT do indeed havesr
The expression (4.112)

Use of

involving

[F
b

-+ F ]
sr s

self-consistent approximation through

ceding analysis shows that the terms

a negligible effect on (4.103) when

for (oF loT) is therefore asp
order E3

which follow from (4.107) and (4.109).

4.2.8 Weak Turbulence

The equations (4.100) and (4.113) comprise a closed set which

describe the evolution of a number of monochromatic waves, and the dis­

tribution functions (FspJ ,in a self-consistent manner through O(E3 )

Let us now consider how these equations may be applied in the limit of

weak turbulence, where the modes of oscillation are so closely spaced in

wavenumber that they may be regarded as a continuum. In this limit, the

evolution of the (F sp ) is still adequately described by (4.113). This

is, in fact, the well-known quasi1inear diffusion equation, and (4.111)

is the usual expression for the quasi1inear diffusion coefficient, D(V) 55
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Conventionally, however, the diffusion equation is derived by way of the

Vlasov equation.

In their present form, the equations for wave evolution are diffi­

cult to apply in the weak turbulence limit. This is because of the sum

over synchronous mode combinations which appears on the right hand side

of (4.100). Given anyone such combination (a'~'1,5) the continuous

spectral distribution assumes that there are other nearly synchronous

(
1 1 ') t""'Icombinations a,~ ,I ,5 at nearby values of ~~ and ,K These other

combinations have various phase mismatches (5e_~1115/} and they

collectively influence the evolution of Wave a in a manner which is

not immediately clear. However, using an argument due to R. K. Fisher

and J. L. Hirshfield56 we shall infer how these effects may be inter­

preted and how the interaction equations may be simplified. The argu­

ment follows.

We have already considered the case of interacting wavepackets

which have negligible width, and for that case (4.100) may be applied

without difficulty. Consider now the wavepacket ~ ,of finite fre-

quency width 5~ Its phase, e~ ,is constant only over time

intervals much less than 5T~ where 5T~ =l/~ Over time inter-

vals much larger than 5T~ there will be negligible nonlinear coupling

between Waves ~ and a ,because 5e~/5 is not slowly varying on

that time scale and exp j5e~/5 vanishes under the time average. In

the turbulent limit, the width of the wavepacket is indistinguishable

from the spectral width, 50s Then 5T
s

(= 1/50
s

) may become very

small for all waves in the spectrum, and it may be much smaller than the

time scale of observation. In that case, no synchronous interaction

which is affected by the phase relationships between modes a,~/, ... etc.

can contribute to the interaction equations; the corresponding interaction

terms must therefore be dropped from (4.100).

The assumption that the interaction equations may be simplified in

this manner is known in weak turbulence theory as the 'random-phase

approximation' (RPA). Various other arguments have been offered to

support it,l4,57 of which that of Davidson appears to be the most rigor­

ous. The theoretical basis will not be explored further in this work.
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The RPA, which is a standard analytic technique, will simply be applied

to the problem at hand. To do this we multiply both sides of (4.100)
'"by A ,then add the resulting equation to its complex conjugate to

-cx
obtain

, (4.114)

but under the RPA, the only combinations we allow under the sum are those

for which Oe~yO is identically zero. This is true only for combina­

tions which are automatically synchronous, such as that produced in the

limit

(4.115)

Consequently, we have

(4.116)

This equation shows that under the RPA the equations of wave evolution

relate the action densities (IA 1
2 } ,or quantities proportional to

T)
them. They do not relate the complex amplitudes, as in the analysis of

monochromatic waves, because under the RPA the right hand side of (4.93)
is replaced by zero. In keeping with the interpretation given earlier,

one may say that the coupling term, jIX_~YOA~AyAOlexpoe~yO ,makes

a contribution to dA/dT which has a rapidly varying complex phase

angle (oe_~yo) Consequently, this contribution vanishes under the

bar average. On the other hand, the magnitude of the coupling term

fluctuates only on the slow scale. The coupling term can therefore make

an averaged contribution to IdA/dTI

(4.114).
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The description of the plasma system in the limit of weak turbulence

is now complete. The interaction equations for the plasma background and

spectral evolution are (4.112) and (4.116) respectively. These equations

are part of the hierarchy of wave and particle kinetic equations, which

have been developed by other methods in the plasma literature. 58 A brief

interpretation of the kinetic equations is given here. For more detailed

discussion the reader may refer to the works just cited. The processes

described by the interaction equations are illustrated schematically in

Fig. 4.4, where the quasiparticle picture for the waves is employed as a

conceptual aid. The number of quasiparticles associated with frequency

n (K) is IA 1
2/n

~ ~ ~

The quasilinear diffusion equation (4.112), describes the effects of

quasiparticle emission and absorption shown in Fig. 4.4(a). There, a

plasma particle emits or absorbs a quasiparticle of frequency ~ and

It undergoes a corresponding change in energy,wavenumber K
~

and in momentum, UK The probability of quasiparticle emission or

absorption is determined by the linear growth or damping parameter,

n . Since energy and momentum must be conserved, the only particles
~~

which affect the emission/absorption processes are those of velocity V

such that ~ = K~V ,and this is the origin of the resonance in the

diffusion coefficient. The diffusion equation describes the collective

effects of emission/absorption on the particles, assuming that the

spectral action densities (quasiparticle populations) are given.

The equation for the spectral evolution (4.116) describes the effects

of two processes. The first is that of Fig. 4.4(a); the effect on the

waves is accounted for by the presence of ~i in the equation. The

second process is shown in Fig. 4.4(b); it is the scattering of a quasi­

particle by a particle. In this process the quasiparticle exchanges

energy and momentum, hence it changes its nand K values, but the

number of quasiparticles is conserved in the process. The effects of

the scattering appear on the right hand side of the equation. The rate

at which a quasiparticle is scattered from state a into ~ and vice

versa is shown to be proportional to the product of the populations,

which is in agreement with the quantum picture. 59 The scattering process
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( b)

(c)

Fig. 4.4 The quantum interpretation of three plasma processes described
by the wave and background kinetic equations. Part (a) shows
the quasilinear interactions, the emission or absorption of a
quasi-particle by a particle. Part (b) shows a nonlinear
wave-particle interaction, the scattering of a quasiparticle
by a particle. Part (c) shows the nonlinear three-wave inter­
actions, the decay of a quasiparticle into two others, and
the inverse process. Energy and momentum are denoted in the

figure by brackets, as in [energy, momentum].
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of (4.116) involves the interaction of a particle with two waves. It is

thus a nonlinear wave-particle interaction.

The quasiparticle decay process illustrated in Fig. 4.4(c) is the

quantum equivalent of the three-wave interaction. It has not been

accounted for in our analysis, because we assumed that three-wave syn­

chronism cannot be satisfied, except perhaps over regions of K which

are so small as to be negligible. This is a valid approximation for

many possible spectral distributions, as an examination of the electro­

static dispersion relations will reveal; and it is a completely valid

assumption for interactions of Langmuir waves in a Maxwellian electron

plasma. In that case, the shape of the dispersion curve makes three­

wave synchronism impossible. When synchronous interactions of

three waves are important in the plasma, they may be accounted for in

the analysis by application of the R~A to (3.56).

4.2.9 Discussion

The analysis of this example, like that of the first, has gone

beyond the essential application of the averaged-Lagrangian method in

order to show how that method fits into the general scheme of nonlinear

analysis. Again, the reader should bear in mind that the method itself

is designed to generate the interaction equations in an efficient and

illuminating manner. It is not intended to solve them. In fact, as

this example illustrates, the interaction equations produced by the

method may involve an unfamiliar set of variables. In such cases, addi­

tional manipulation is necessary if the equations are to be expressed in

conventional terms. The example also illustrates, that even in a highly

symmetric system, and even after the application of the RPA, the inter­

action equations may be complicated to solve. Extensive discussion of

dynamic .and asymptotic solutions of the quasi linear equations may be

found in the plasma 1iterature. 12 ,13,18

Because the plasma has been described statistically in this example,

rather than hydrodynamically, the Lagrangian formalism is employed more

fully than in the first application. Also, because of the distribution

of the plasma in velocity space, the linear theory may predict wave
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growth or damping. This causes a perturbation of the background which

is of sufficiently low order that it must be taken into account in the

wave analysis. As the (F J change, the dispersion relation changessp
too (on the slowsca1e), and this changes the rate of growth or damping.

Beyond this, the effects of the evolving distribution function have been

neglected in the wave analysis.

An interesting feature of the warm plasma considered here is that

the waves may have negative energy (€ < 0) This does not affect
~

the quasi1inear or scattering processes described by (4.116), but if

the system allows for three-wave (decay-type) interactions between waves

of positive and negative energy, there will be an explosive instability

of the type mentioned in Section 2.4.4. The parameters of the instability

are the coefficients for the three-wave interaction. For this electro­

static plasma system, these have been obtained by way of the averaged­

Lagrangian method in reference 24. A detailed discussion of their app1i~

cation to explosive instabilities has been given by Dysthe,60 who obtained

the equations by conventional means.

This example was intended to illustrate how the four-wave interactions

may be dealt with in the case of discrete waves, and how the RPA may be

applied to the equations. However, the additional manipulations involved

in the application of the RPA may lead one to suspect that in turbulence

studies the averaged-Lagrangian method may be clumsy in comparison with

the quantum mechanical approach, which is more directly oriented toward

the turbulent case. Actually, the averaged-Lagrangian approach is quite

efficient, and has definite advantages when the physics of the medium does

not really require a quantum description. Section 3 has shown that the

averaged-Lagrangian method produces equations for the wave evolution in

standard forms. The appropriate form is determined by the symmetry of

the medium, and the types of interaction processes under consideration,

where each type is characterized by its synchronism conditions. The

standard form equations are independent of the particular algebraic

expression for! The RPA may be applied to these equations, thereby

producing standard forms for the wave kinetic equations and their coef­

ficients. Equation (4.116) is one such form. Once this is done the
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process need not be repeated. For a given medium, the particular

expression for ! is simply used in conjunction with the standard

expressions to calculate the coefficients.
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5. APPLICABILITY AND CAPABILITIES OF THE

AVERAGED-LAGRANGIAN APPROACH

In this section, we shall explore certain topics in physics and

mathematics in regard to the applicability, capabilities, and possible

extensions of the averaged-Lagrangian method. We shall first review

the basic assumptions of the theory. Then, in order to interpret them,

we shall consider: the effects of boundaries between nonlinear media;

the problem of formulating a Lagrangian for a given nonlinear medium

or set of nonlinear equations; dissipative media, and the related topic

of variational principles other than Hamilton's. Finally, we shall

survey the various types of nonlinear effects which are within the

domain of the method.

5.1 Basic Assumptions of the Averaged-Lagrangian Theory

The averaged-Lagrangian method of Section 3 will yield a complete

set of equations for the wave and background evolution under the condi­

tions that (a) the medium is continuous over a region much larger than

the wave periods, and it has a suitable Lagrangian description as defined

in (3.1) and (3.2), (b) the Lagrangian density may be expanded in powers

of the perturbations from a reference state which is either an exact

solution to the full nonlinear equations or differs only slightly from

one, (c) the perturbations [qi = q~ + ~~q~} are small enough that the

weak-coupling approximation is valid, and (d) the inhomogeneity in the

background state, defined by the reference state plus the [q~}, is a

slow fluctuation, i.e. it is on a scale €~, €t much slower than the

periods of any waves present in the medium.
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The method is based on a perturbation expansion, and if it is to

be useful, the exact solution of condition (b) must be known. For some

problems, there is a series or continuum of such solutions. The exact

solution need not be an equilibrium state, although the latter is always

an exact solution. An exact solution is simply a complete set of para­

meters which satisfy the equations of motion. The state need not be

stable with respect to a perturbation of these parameters. An example

of such a solution is a Maxwellian Plasma through which a beam passes,

with no waves present. If there is no perturbation, the beam and plasma

remain unchanged, but even a very small amplitude wave perturbation may

lead, eventually, to large changes in the beam and plasma distribution

h h 11 k b 1 . b ·1· t 61functions throug t e we - nown eam-p asma 1nsta 1 1 y.

The Lagrangian analysis has relied on a clear separation in scale

between the periods of the waves in the medium and other slowly varying

quantities, such as the [q~} . This means that the method does not

apply if the wave components have ill and k values which extend down

to zero.

5.2 The Effects of Boundaries

If a region of a medium is described by a Lagrangian density which

has only a slow scale dependence on position within the region, we shall

call this region "unified." If two unified regions are separated by a

transition region which is not described by some £, or in which £

changes rapidly, we shall refer to the transition region as a "boundary"

between the unified regions. If the width of the boundary region is

much less than the wavelengths under consideration, it will be referred

to as a "sharp boundary."

Since the averaged-Lagrangian method assumes slowly varying wave

parameters, it does not, as it stands, describe the nonlinear interaction

of waves as they propagate across a boundary region. However, it does

apply when the boundaries are parallel to the direction of propagation.
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The effect of such parallel boundaries is simply to add a transverse

mode structure to the small-signal waves. If the propagation is in

the z direction, the spatial dependence of the small-signal modes is

The variables in the averaged Hamilton's principle are

Since there is no variation with respect to the x and

,.,
a

11
y

and e
11

coordinates,

the Euler-Lagrange equations involve only the integral of ! over these

coordinates. It is through these integrals that M affects the mode
11

coupling parameters. The same formulas developed in Section 3 apply to

this case, except that A now is an integral of A over x and y as

well as v
~

For some problems, it would be desirable to have an extended averaged­

Lagrangian method which accounts for the nonlinear effects of boundary

regions. We shall not actually develop such a method here, but we shall

consider the first theoretical step: the inclusion of the boundary terms

in the action integral.

Let us consider a unified region, R , bounded by a surface S;

and let us assume that wi thin and on S··, the medium is described by a

Lagrangian density, ! ,which depends only on ~, t, the (qi}

and their first derivatives. When!, or the variations (Oqi), vanish

on S ,Hamilton's principle yields the Euler-Lagrange equations (3.3).

However, when boundary terms are included, an integration of the action

integral (3.1) by parts gives

t
2

o =1
1

dt.[d3x!(l+'6qi,~,t)
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where

-~
k

and

[E-L-S] .
1.

Here, £ is a unit vector, pointing normally outward from the dif­

ferential surface element ds ,and the [~k} are cartesian unit

vectors, corresponding to the coordinates [~} Because oqi may

be of arbitrary form within and on S, (5.2) implies that for (i=l, ... ,M)

[E-L]. = 0
1.

(in R), [E-L-S] .
1.

o (on S)

The first of these equations is simply the Euler-Lagrange Equation (3.3).
iThe second is the boundary condition for the variable q at S

Thus, the boundary conditions, as well as the equations of motion are

given by Hamilton's principle.

For two unified regions, separated by a single boundary, the rela­

tions between the surface terms of the regions tend to simplify con­

siderably in the limit of zero boundary width. It therefore seems

probable, that by including surface terms in the Lagrangian analysis,

we may usefully extend the averaged-Lagrangian method to account for

nonlinear interactions at sharp boundaries. Such interactions are

important, for instance, in problems of coherent optics, which have

been treated theoretically by Bloembergen and Pershan. 62 When the

boundary is sharp, the wave parameters on either side may be treated

as independent variables in the Lagrangian analysis. They are to be

related by nonlinear boundary conditions which derive from the contri­

bution of the boundary to the total Lagrangian. By introducing dif­

ferent variables for waves on each side of the boundary, we can maintain
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consistency with the averaged-Lagrangian concept that changes in the

wave amplitudes are on the slow scale in x and t

The averaged-Lagrangian method cannot be extended to describe wave

interactions in boundaries of finite width, because, in that case, it is

necessary to trace the changes in the wave parameters continuously through

the region. The changes are too rapid for description by the averaging

approach developed in the present work.

5.3 Formulation of the Lagrangian

The application of the averaged-Lagrangian method is possible only

when there is a known functional! of a set of dependent variables

(qi} ,such that the set of equations (E-L} , generated by Hamilton's

principle, completely describe the model for the medium. In this dis­

cussion, the formulation of ! will be referred to as the "general

inverse problem." The term "general" is used in order to distinguish

the problem from a more restrictive mathematical problem to be discussed

later in this subsection. There is no necessity for the medium to be

real in the physical sense; the model used for it may be either physical

or mathematical. In either case, however, the variable parameters of the

model must be associated with a set of descriptive equations, [M) , which

describe their behavior. We shall say that a Lagrangian description of

the medium is "complete" if and only if the equations generated from

! through Hamilton's principle correctly describe the behavior of all

variable scalar parameters, (pi}, of the model. In this sense, they

are equivalent.to the equations (M}. In equivalent sets of equa- ,

tions, the scalar variables may be different in definition and in number.

Any complete description, however, defines transformations which specify

each parameter, pj, in terms of the (qi}. This was illustrated in

Section 4.2, where the Lagrangian analysis of a warm plasma described

the same phenomena as the Maxwell-Vlasovequations, by using different

variables for the particle perturbations. An important aspect of the

general inverse problem is that its solution, !, may involve some
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The Lagrangian description is associated with a more general
i

mathematical model, however, in that (E-L) has solutions for the (qs}

as well. In general, these solutions are'not of interest in them­

selves, but we shall see in the course of this discussion that they

variables, (q~} , which are not involved in the transformation rela­

tion. These will be referred to as "supplementary variables," and the

remainder of the (qi} will be referred to as the "primary variables",

(q~} Consider the Lagrangian description of a medium in which £

involves both types of variables. The equations (E-L) are equivalent

to (M) , i.e. all solutions (qi) to (E-L) specify all solutions (pj)

to (M)

sometimes may be given a physical interpretation.

Section 3.1.1 has shown that a Lagrangian description implies that,

for any independent variable, t , the equations (E-L} imply a conserva­

tion relation. Equation (3.8) is the form of that relation when £ is

a function of the independent variables, the (qi) and their first

derivatives only. The existence of such relations provides information

about the Lagrangian description of dissipative physical media. Consider

a dissipative medium, described by a set of primary variables, (pj), and

equations (M) . For such a medium, these equations and variables cannot

be used to construct an energy conservation relation of the form (3.8),
where t is the time. This implies that if a Lagrangian description of

a dissipative medium does exist, it can be formulated only through the

introduction of supplementary variables, (qi)
s

5.3.1 The Physical Approach to the Variational Formulation

The basic physical approach to the general inverse problem follows

the line of reasoning used in the first example of Section 4. Kinetic

and potential energy states are associated with the variables, then a

trial expression for £ is constructed according to the classical pre­

scription (3.12). Except for purely mechanical systems it is generally

not clear how to divide the energy into "kinetic" and "potential" parts, so

the choice for £ must be ultimately justified by the correctness of

the resulting equations. Although this approach is essentially heuristic,

it has been used with considerable success. A variant of this approach

128



is the analogy with a mechanical system discussed earlier in Section 3. 1 ,

and another is that used by Low27 in his formulation of a warm plasma

Lagrangian. Low constructed the needed Lagrangian by combining other

known Lagrangians.

If the Lagrangian, obtained by any of the methods mentioned above,

is not expressed in a convenient set of variables, one may make a trans­

formation to a new set of variables without invalidating the variational

principle. The principle itself involves small changes in the physical

state of the medium, and is not dependent on the parameters used to

characterize that state. The variations must be consistent with any

constraints on the system, however, and the variables must be independent

of one another.

An attempt to clarify the energy-state approach to the Lagrangian

formulation has been made by Penfield and Haus. 45 They have categorized

the variables of a physical system as either lfforce like lf or "geometric"

in order to aid in the identification of energy terms with &r or ~ .

The result of this effort appears to be a more clearly expressed version

of the classical rule (3.12), but a rigorous justification of the rule

from physical principles is still lacking.

For a dissipative system, the physical approach is inapplicable

because there is no conserved energy density, &r + ~ , associated with

the dissipative model. However, a physical approach to overcoming this

difficulty is to consider a more complete model than that which describes

the system alone. The new model combines the dissipative system with its

conjugate, i.e. the system to which the energy is lost through random

processes. The combined system is conservative and may thus be described

by a Lagrangian. The variables which des~ribe the conjugate system are

supplementary variables with respect to the original, dissipative model.

With respect to the combined models, however, all of the generalized

variables are primary. The introduction of additional variables to

describe the conjugate system is one disadvantage of this approach.

Another is that the physics may become much more complex. Consider, for

purposes of illustration, a plasma in which inelastic collisions occur

between the charged and neutral particles. The collisions may be described
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as conservative processes only if the excitation energies of the neutral

particles are accounted for. If this were done through a quantum

mechanical description of the particle behavior, and the classical theory

we have developed in this investigation would not apply. The nonlinear

behavior of a quantum model may be treated by the second-quantization

approach mentioned in Section 1. The reader should keep in mind that,

although the classical Lagrangian formalism cannot account for true dissi­

pation, such as collisional loss, it is still capable of accounting for

non-random exchange of energy between a medium and external sources. There­

fore, the system need not be thermodynamically closed, merely non-dissipative.

Furthermore, the Lagrangian description can account for Landau damping of

an electromagnetic wave in a plasma. This damping is implicit in the

results of Section 4.2. The Landau damping process involves no loss of

energy, since it occurs even in a co11ision1ess plasma. The process

simply results in a transfer of energy from the fields of the waves into

fine scale fluctuations in the distribution functions of the plasma

particles.63

5.3.2 The Mathematical Approach to the Variational Formulation

Much of the mathematical literature on variational formulations con­

cerns itself with the following restricted version of the general inverse

problem. Take, as given, a set (M) ,of M coupled partial differential

equations in M variables, (pi) The equations are defined in an

(£ + 1) - dimensional volume V of the coordinates (~: k=O, ... £)

The problem is of two parts: (a) determine whether the system (M} is

equivalent to the set generated by

oj == ° .r £+1 i
J ~T d x S(p ,~)

V

,

and (b) if this is the case, prescribe how the functional £ may be

constructed. This problem differs from the general inverse problem, in

that the variables of S are required to be identical to those of (M} .

The use of supplementary variables is not allowed. This problem will be



referred to henceforth as the "strict inverse problem." A set of equa­

tions for which the variational formulation described in (a) is possible

will be labeled "self sufficient." The label has been used previously
64

by Becker.

The strict inverse problem proves to be quite complicated, arid it

has not been solved in its full generality. In the literature, the

problem was first defined and solved for special cases by Darboux,65 in

a geometrical treatise, and by Hirsch,66_ in a mathematical paper

devoted entirely to the subject. Both of these treatments dealt only

with ordinary differential equations. Subsequently, the problem has

been treated in increased generality by others. Significant work has

been published by Kurschak,67 Davis,68 La paz69 and Doug1as. 70 A text

by Funk7l provides a survey and an introduction to the work on this

subject through 1970.

All published solutions to the special inverse problem have been

obtained for differential equations in which the number of independent

and dependent variables, and the order of the derivatives, are restricted.

The most general solutions published to date appear to be those of La Paz

and Douglas. Both allow only for ! to be a function of the (pi} and

their first derivatives. La Paz treated the system of second order dif­

ferential equations having many independent variables and only one depen­

dent variable. Douglas also considered second order equations, but

allowed for up to three dependent variables and two independent variables,

requiring that the equations be linear in the second derivatives of the

independent variables.

In unpublished work, peng72 has solved a problem in which the numbers

of dependent and independent variables are allowed to be arbitrary. Other­

wise, his assumptions are identical to those of Douglas. The problem as

formulated by Peng is the most general case of a special inverse problem

for which a solution is known to this author. The need for more general

solutions is illustrated by the Euler-Lagrange equations of the warm plasma

Lagrangian (4.79). These are not of a general form for which the special

inverse problem has been solved.



Certain sets of partial differential equations are not self­

sufficient. Some of these sets have been identified in the course of

purely mathematical investigations
68

and others appear in the mathe­

matical description of physical processes. Gage et a1 73 have shown

that the general thermokinetic equations are not self-sufficient, and

other examples are to be found among the equations used to describe

dissipative media. A simple one is the damped wave equation

In this equation, q is the independent variable, and the independent

variables are position, x ,and time, t The constants rr and

are the damping coefficient and the characteristic speed of propaga-c
p

tion, respectively. The problem is self-sufficient only it rr is zero.

The use of supplementary variables leads to the solution of the

general inverse problem for many non-self-sufficient sets of equations,

including (5.7) and others which describe dissipative media. Two mathe­

matical techniques for Lagrangian formulations through the use of supple­

mentary variables are discussed in the remainder of this subsection.

DUAL VARIATIONAL FORMULATION: One approach to the general inverse

problem involves a "dual" Lagrangian formulation, in which each primary
i it

variable, q ,has associated with it a supplementary variable, q

For simplicity of exposition, we shall consider a single nonlinear descrip­

tive equation which has only one independent variable, x ,and one depen-

dent variable, q The discussion follows that given in a monograph by

Becker. 5l The equation is

Aopq + g = 0

is a functiongis a nonlinear differential operator, and

Whether or not this equation is self-sufficient depends on

A special self-sufficient case is that in which A
Op

the nature of A
Op

in which Aop
of x only.



is a linear operator such that

,

for any well-behaved functions ql(x) and q2(x) An operator with

the property (5.9) is called "self-adjoint," and when A is such an

operator, the variational principle which corresponds to (5.4) is

oj o qA q
Op

Even when A is not a self-adjoint linear operator, (5.8) admits

of a variational description through the use of a supplementary variable.

The variational principle is

tin which q is a second independent variable, called the "adjoint" of
tq An integration of (5.10) with respect to q yields

b

J =£ dx !

where h is an arbitrary function of x and q on the interval a-b

Clearly the variation of t
under the assumption thatq , oj is zero,

gives the desired equation, (5.8) . The variation of q on the other

hand, gives

Ib ["" t dh d dh ]
OJ = dx Aopq + dq - ~ d(dq!dx) +... oq
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in which A is the "adjoint operator," defined to be such that

Since oq is of arbitrary shape in a-b ,(5.13) implies the "adjoint

equation"

+... o

The definition for At is meaningful if and only if the variables and
Op

the variations of the problem are such that (5.14) is the result of an

integration by parts. To insure that this is the case we impose

boundary conditions of the form

t t t t
B(q ,q ,5q ,oq, x)x=b - B(q ,q ,oq , oq, x)x=a o ,

where B is determined by (5.14) and the form of Aop The equation

(5.16) defines the boundary conditions needed for the complete specifica­

tion of the adjoint problem.

It is known that dual variational descriptions may be given for

certain dissipative media other than those described by an equation of

the form (5.8); but we make no claim here that a dual formulation is

possible for each member of the entire class of dissipative systems.

The mathematical limitations of the dual variational formulation do not

appear to be established precisely enough to prove or disprove such a

claim.

For any set of M linear inhomogeneous partial differential equa­

tions, in M dependent variables and any number of independent variables,

the dual variational description is straightforward. The approach to

solving such an inverse problem is the same as that which led to (5.11).



The dual variational formulation for nonlinear equations is a more
64

complicated problem which has been studied, for example, by Becker.

The analysis of a set of dual equations is generally more compli­

cated than the analysis of the primary set of equations, because the

number of independent variables and boundary conditions is greater for

the dual set. The dual analysis may also be more complicated because

of the form of the adjoint equations and boundary conditions. These

forms may be unfamiliar, even when the primary problem is not. Further­

more, when the primary problem describes a physical system, information

about the solution may sometimes come from physical insight. The adjoint

variables, on the other hand, may have no physical interpretation. Even

in obtaining approximate solutions to the adjoint problem, considerable

analytic effort may be involved.

The averaged-Lagrangian method may be applied to problems of non­

linear wave interaction even when the variational formulation is of the

dual type. In the analysis, however, the small-signal relations must be

d f d bl [q i t} 11 f h ffoun or the set of a joint varia es as we as or t e set 0

1 [qi} 1primary variab es Each set will have its own c osed set of

small-signal relations because in the linear limit, the primary and

adjoint variables are related only by the adjoint boundary conditions.

Since the primary equations describe wave behavior, the solution of the

adjoint equations is straightforward in the small-signal limit: they

must have wave solutions also.

LAGRANGE MULTIPLIERS: Another use of supplementary variables, in

the solution of the general inverse problem, is in the form of Lagrange

multipliers. These are used when a functional !(qi) is known to gen-
p

erate a given set of equations through a variational principle which is

more restrictive than (5.6). The additional restriction is that the

[ i} [ '}qp must be varied in keeping with a set of constraint equations M

Through the introduction of supplementary variables [q;J it is possible

to use the constraints and ! to construct a functional X" which has

the following property: A Hamilton-type variational principle, with ~"
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the functional kernel, generates a set of equations MH such that

(M) U (M' J

That is, (M#) is equivalent to the conjunction of the sets of equations

(M} and (M') ~ The method of Lagrange multipliers is a familiar one in

the literature of physics and variational calculus. A description of

the analytic steps is given in the standard texts on the subject, such

as that of Goldstein,74 or Courant and Hilbert. 75

5.4 Other Variational Principles

There exists a classical technique for accounting for dissipative

effects in a modified Lagrangian description. The label "modified" is

used here to indicate that the description does not employ a Hamilton­

type variational ryrinciple. It is, however, associated with the varia­

tional principle of virtual work, known in classical mechanics as

D'Alembert's principle. 76 Use of the principle of virtual work leads to

the formulation of a dissipation function, ~ , which is sometimes

called the Rayleigh dissipation function. It accounts for the effect of

dissipative forces in the medium. The functional ~ is added to ,
the Lagrangian density which describes the behavior of the medium in the

absence of dissipative forces, and the descriptive differential equa­

tions are obtained from J. + ~ by means of a modified Euler-Lagrange

formula. Examples of the application of the principle of virtual work

in non-mechanical systems have been given by Biot,77 who developed a

modified Lagrangian description for heat transfer processes. The

averaged-Lagrangian method, as it has been developed here, cannot be

used in conjunction with variational principles which are not of the

Hamilton type.

5.5 Plasma Lagrangians

This subsection is devoted to a survey of the known plasma Lagran­

gians, which may be usefully characterized and discussed in relation to

two archetypes. The first of these is the Low Lagrangian for a warm plasma.



This Lagrangian, which was employed in Section 4.2, generates equations

which are equivalent to the Maxwe11-V1asov equations. The second arche­

type is an ideal hydrodynamic plasma Lagrangian which, by definition,

generates the equivalent of the hydrodynamic plasma equations, i.e. the

electromagnetic equations in conjunction with the velocity moments of .

the V1asov equation. The moment equations comprise a hierarchy of hydro­

dynamic equations which is useful when the effects of wave-particle res­

onant interactions, such as Landau damping, are not significant,

provided also that the series of equations may be truncated at some veloc­

ity moment without much loss of accuracy. Henceforth in this discussion,

the term "hydrodynamic" will refer to the description of a single beam.

The hydrodynamic equations generally used in plasma theory are the first

three moment equations: the continuity equation, the momentum transfer

equation, and the heat transfer equation.

The Low Lagrangian appears to be the only useful Lagrangian of its

type which is presently known. It has the convenient property that it

may be expanded about a given reference state in a set of field-like

independent variables. The reference frame is a set of Eulerian inde­

pendent variables. A different formulation of this Lagrangian was used

as a starting point by Low, but in that form the Lagrangian is divided

into two terms, in which the independent variables are of the Eulerian

and Lagrangian types, respectively. In that form, the Lagrangian is

unsuitable for use with the averaged-Lagrangian method.

Hydrodynamic Lagrangians have been the subject of numerous publica­

tions, and a variety of forms have been proposed. These differ in the

choice of variables, the constraints imposed on them, the physical

assumptions about the medium, and the accuracy to which the hydrodynamic

approximation has been carried. The formulation of a hydrodynamic

Lagrangian with respect to a system of Lagrangian coordinates was the

subject of a paper by Eckart78 in 1960. However, the main interest in

the literature has been in solving the more difficult problem of formu­

lating the Lagrangian in an Eulerian coordinate system. Eulerian formu­

lations are, in general, the most convenient analytically, and they are

of the greatest relevance to the present investigation. Henceforth, this
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discussion refers only to those variational principles which involve

Eulerian coordinate systems.

Early progress in the variational description of hydrodynamic media

was reported by Taub,79 in 1947, and by Davydov,80 in 1949. Taub formu­

lated a Lagrangian for an inviscid, perfectly compressible fluid with no

heat conductivity; Davydov concerned himself with finding the appropriate

canonical variables for the fluid Lagrangian, and he gave a Hamiltonian

description of the medium. Neither of these authors included the e1ectro-
81

magnetic fields in the variational description. In 1961, Katz con-

sidered the inclusion of the field behavior in a Lagrangian description

of an inviscid, perfect, compressible plasma. Subsequent papers by Su,82

Lundgren,83 ca1kin,84 and Merches,85 discuss and solve various forms of

a related but different problem: the formulation of a Lagrangian which

yields the magnetohydrodynamic equations. This problem is different, in

that an additional constitutive relation, infinite conductivity, is

incorporated into the descriptive equations. In the aforementioned magneto­

hydrodynamic Lagrangians, the pressure is assumed to be isotropic, but in

a relatively well-known paper, in 1962, Newcomb
86

formulated Lagrangian

expressions for cases in which the pressure tensor is required only to

be symmetric about the axis of the externally applied magnetic field.

Problems of boundaries were considered by Taub, and by wenger,87 who

extended the magnetohydrodynamic Lagrangian description to include sur-

face Lagrangian densities, for a particular model of flow in a channel

with fixed boundaries. Application of Hamilton's principle to the

Lagrangian surface terms gives the correct boundary conditions on the

variables for his model. A Hamiltonian formulation for magnetohydro­

dynamics of an ideal liquid was contributed by Zakharov and Kuznetsov88

in 1971.

Recent work on the Lagrangian description of non-magnetohydrodynamic

fluid and plasma models has been published by Penfield and Haus,89 in 1966,

and in 1971,Zakharov90 authored a paper on the Hamiltonian description

for such a model. The published work up to the present time appears to

prOVide Lagrangian descriptions for inviscid, compressible fluids which

have current transport through conduction. Ohm's law has not been taken



into account except in the magnetohydrodynamic case in which the con­

ductivity is assumed to be infinite. No viscosity or ohmic loss result­

ing from particle collisions has been taken into account in any of these

descriptions, and the equations generated by the Lagrangians do not

describe moment equations of higher order than the second, i.e. the

momentum transfer equation. In recent unpublished work, peng91 has

shown how one may include the heat transfer equation, as an additional

constraint, and account for elastic collisions between particles, by

the addition of an interaction energy term to the Lagrangian.

In the case of a perfectly cold plasma (no thermal motions) the

Vlasov and hydrodynamic descriptions are equivalent. For this simple

case, the most useful formulations for the Lagrangian seem to be of two

types. These differ in their choice of variables. One type, formulated

by sturrock43 uses a set of displacement variables to describe the par­

ticle perturbation. This representation most closely resembles that used

later by Low in formulating for the Vlasov plasma. The second type of

formulation employs the commonly used Clebschvariables of hydrodynamics,

and is thereby the closest to the hydrodynamic formulations mentioned

above.

The Lagrangian for a cold plasma stream, expressed in the Clebsch

variables, was used by Buneman63 to obtain a warm plasma Lagrangian

in a form quite different from those already mentioned. Buneman con­

sidered the approximation of a warm plasma by a finite number of non­

vortical cold streams, and formulated a stream-model Lagrangian in

terms of the Clebsch variables for each stream. In his formulation, !

consists of !(2) + !(3) ; there are no higher order terms. However,

the number of independent variables is much larger than in the Low

description if the number of streams is very large. The stream-model

tends to a Vlasov description of the plasma, in the limit of a large

number of streams. The stream-model Lagrangian appears to be well suited

to computer simulation of plasma phenomena, and is an alternative to

microscopic simulation techniques, which involve the tracking of a large

number of particles, or groups of particles, in time and space. The

averaged-Lagrangian method could be applied to the stream-model
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Lagrangian because the stream description uses Eulerian position co-

ordinates, t and x However, for many streams, the number of

independent variables is quite large, and the analysis would be extremely

tedious.

5.6 Capabilities of the Averaged-Lagrangian Method

The preceding sections have shown how the assumptions made in the

development of the averaged-Lagrangian method set the limits on its

applicability. These limits define the domain in which the method is

valid, but they do not, in themselves, convey a picture of what problems

lie within these limits. For that purpose, we shall now consider how

the problems within the domain of the method may differ in their various

characteristics. Hereafter in this subsection it will be assumed that

the basic assumptions of the method, summarized in Section 5.1, are valid

for all of the problems under consideration.

The media to which the averaged-Lagrangian method may be applied

constitute a broad class of physical and mathematical systems, of which

three-dimensional physical media are only a subclass.

(qi}does not require that the dependent variables

The analysis

be given any parti-

cular physical interpretation, nor does it require that independent

variables, ~, x and t actually represent velocity, position and time

coordinates. This notation has been chosen simply because it is generally

convenient in the description of non-relativistic physical media, in-

must be oscillatory with respect to

The fqi}t need not be oscillatory withcoordinates.xandtthe

eluding plasmas. The Lagrangian analysis merely requires that the sets

(qi} and (xk,t} each have at least one element, and that the small

(qi}signal solutions for the

respect to the v coordinates, if they are used. The description of a

Vlasov plasma required seven independent scalar variables, which repre­

sent velocity, position, and time. On the other hand, the properties of

a fluid or a solid are functions of position and time only, and a collec­

tion of coupled oscillators constitutes a medium, for our purposes, in

which there is only a single independent variable, the time. Of course,

the oscillators may not be fixed in space, so the position of an oscil-
slator, s, may be denoted by a positional vector, r That vector,
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however, is a dependent variable which has the argument t. It does

not play the role of an x-coordinate.

The averaged-Lagrangian method may be applied to a medium which is

weakly inhomogeneous in the x and t coordinates. The medium may be

strongly anisotropic, and although its state must be close to an exact

solution of the descriptive equations, it need not necessarily be near

a state of equilibrium. The method applies equally well to waves in un­

bounded media, to waves which propagate parallel to fixed boundaries,

and to oscillations which evolve in time only, such as standing waves

in a cavity. If the waves propagate across boundaries, the method

applies only within the region of continuous propagation.

For monochromatic waves, the method yields equations which describe

the effects of linear growth or damping, weak inhomogeneity, and non­

linear wave-wave and wave-background interactions to all orders in the

small parameter € In the case of plane waves in a large continuous

region, the method allows for propagation of the waves at arbitrary

angles with respect to one another and any axes of symmetry in the

reference state. We have seen that the wave-wave interaction effects

accounted for by the method include the interesting special cases of

sideband decay and the self-action of a single, large amplitude, mono­

chromatic wave. The effect of synchronism mismatch in wave-wave inter­

actions is also accounted for.

The method is effective for the nonlinear analysis of monochromatic

waves, because it yields equations for the wave evolution in a standard

form. That is, the structure of the equations and the formulas for

their coefficients do not depend on the physics or mathematics of the

medium, except through the assumption that a Lagrangian description is

possible. The standard form depends only on the synchronism conditions

which characterize the interaction processes. For a particular medium,

the interaction equations are obtained explicitly by substitution of !

and the corresponding small-signal relations into the standard form

equations.

The method is also effective for the analysis of continuous wave

spectra in the weak turbulence limit. This is done through application
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form a hierarchy of back-

of the random-phase approximation to the standard form equations for the

monochromatic waves. The resulting wave-kinetic equations will also

have a standard form, for a particular interaction process, and once

these are obtained, the coefficients may be calculated for a particular

medium by inserting the expression for £ into these formulas. This

technique, and its counterpart for monochromatic waves, are qUite similar

in calculational efficiency. However, the standard formulas obtained

through the RPA tend to be somewhat simpler algebraically than those for

the monochromatic wave analysis.

The background evolution differs in many respects from the wave

evolution, and its description by the averaged-Lagrangian method differs

accordingly. For a medium in which waves propagate in the linear r~gime

without growth or damping, there is no wave-background interaction. We

have seen from the example of Section 4.1 that in this case, the method

yields background equations which are uncoupled from those of the waves.

When there is linear growth or damping, the method yields the quasi­

linear equations of background evolution, as in the example of Section 4.2,
and, when the analysis is carried to higher orders of e, the equa­

tions include the effects of nonlinear wave-background interactions -

such as nonlinear wave-particle interactions in a warm plasma. The

approximations, to the various orders in e

ground equations.

APplication of the RPA to the hierarchy for the monochromatic wave

case will generate another hierarchy, the background kinetic equations.

The term "kinetic" indicates that the wave parameters which appear in

these equations are the wave energies, as opposed to the complex wave

amplitudes which appear in the other background equations. We have seen

in Section 4.2 how the background kinetic equations may be obtained for

a plasma example. In plasma nomenclature, these are called the "particle

kinetic equations" because the background parameters which change are

the particle distribution functions.

The utility of the averaged-Lagrangian approach to the background

analysis is in its compatibility with the wave analysis. Use of an

averaged-Lagrangian formalism in both analyses is aesthetically pleasing,
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and it makes possible the efficient ordering procedure described in

Section 3. Without a unified formalism it would be more difficult to

make self-consistent approximations for the wave and background

equations.



6 . CONCLUS IONS

This dissertation essentially completes a program of investigation

which has resulted in earlier publications and co-publications by this
22-24

author. The goal of the program has been to provide a conceptually

useful and analytically efficient method for the analysis of nonlinear

wave effects, in continuous media which have a classical Lagrangian

description. The insight and elegance provided by Hamilton's principle

have been utilized as (a) as means of establishing general properties

of the interaction equations, such as the Manley-Rowe relations and the

necessary conditions for explosive instability, and (b) a means by

which standard expressions for the wave interaction parameters may be

obtained. We have already shown that the resulting averaged-Lagrangian

method has characteristics of elegance, convenience, and versatility

which are desirable in the analysis of complicated nonlinear wave

phenomena, such as those which occur in plasmas. Here we shall review

the original contributions of the work, and discuss future applications

of the averaged-Lagrangian approach to plasma and non-plasma problems.

6.1 Original Contributions of the Work

The original contributions of this work are contained in (a) the

averaged-Lagrangian method itself, (b) the derivation of standard formu-

las for nonlinear wave coupling coefficients, and (c) the application of

the method to specific nonlinear wave problems in plasma physics. Here

we shall review these contributions in more detail.

The averaged-Lagrangian method presented here is closely related to

previous work by others, notably that of Dougherty20,25 and Dysthe. 2l

The new feature of this method is the manner in which it incorporates the

background analysis. This is done here by means of a dual expansion of

! in terms of the wave and background variables. An ordering procedure,

based on this expansion, is used as a means of approximating the wave and

background equations in a mutually consistent manner. No other Lagrangian

method with this feature has come to the attention of the author. In

fact, with the exception of the papers by Dougherty, it appears that no
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other Lagrangian analyses describe the background evolution at all.

Dougherty, however, has noted the possibility of describing the back­

ground evolution through the Lagrangian formalism, and he has shown how

this may be done for certain simple examples. He has not, however,

developed the background analysis in a manner which is well suited to

the more complicated plasma problems.

In Section 3 it was shown how the wave interaction equations and

their coefficients may be derived in standard form, in terms of !.

These are significant results, as we have already seen; in fact, they

are the reason why the averaged-Lagrangian method is so attractive in

nonlinear wave analysis. Once the standard forms are established for

the wave-wave interaction processes, we need only to insert the specific

form of ! in order to completely specify the wave evolution for a

particular medium. The functional ! supplies all the detailed infor­

mation about the medium's physical or mathematical properties. For the

three-wave case, a complete statement of the standard formulas was

given by this author and F.W. Crawford in 1970.23 Previous to this,

in 1966, Siegman33 had inferred the general form of the interaction

equations from classical Hamiltonian theory. He did not, however,

derive useful formulas for the interaction coefficients.

In this dissertation, the plasma applications have been chosen

with a view toward illustrating the power and elegance of the averaged­

Lagrangian method. They were not intended to generate new results,

but they do contain original conceptual features, which provide additional

insight into the problems. An example is the derivation in Section 4.2

of the quasilinear diffusion equation, a result which is already well­

known in the plasma literature. The new contribution of the present

analysis is the derivation of this relation by means of the displacement

variables of the Low Lagrangian.

In earlier publications by this author the averaged-Lagrangian

method has been applied to wave-wave interaction problems only. The

phenomena considered were three-wave interactions in a nonlinear trans-

mission line, a cold plasma, and a Vlasov plasma. Of these, only the

cold plasma application was intended to produce new results, i.e. the



interaction equations and coupling coefficients for any three Appelton­

Hartree waves, propagating at arbitrary angles with respect to one

another and the static magnetic field in a cold, homogeneous magneto­

plasma. The results are of interest because of their generality.

Previously, the three-wave interactions in a cold plasma had been ana­

lyzed only for more specialized cases.

6.2 Future Applications of the Method

The preceding sections have shown that the limitations of the

averaged-Lagrangian method stem primarily from two of its features.

First, it requires a Lagrangian description of the medium, and second;

it is a perturbation theory. In plasma applications of the method, the

first limitation is not very severe. We have shown in Section 5.5 that

the known plasma Lagrangians describe most of the important plasma models.

The major exceptions are the dissipative collisional models. However,

the discussion of mathematical techniques, in Sections 5.3 - 5.4, sug­

gests that through the introduction of supplementary variables it may be

possible to describe any dissipative physical medium by a variational

principle of the Hamilton type. We have neither proved nor disproved

that proposition here, because of the mathematical complexities involved.

The limitations which stem from the perturbation nature of the

method are much more severe than those discussed above, because the

perturbation assumptions firmly limit the method to the description of

weak nonlinear effects in weakly inhomogeneous plasmas. The domain of

the method is broad enough, however, to encompass almost all of the non­

linear effects which are describable by any plasma theories available at

this time. Therefore, the prospects for application of the method in

the immediate future are bright. In the long run, however, it may be

that perturbation analyses will be overshadowed in importance as develop­

ment proceeds on techniques for the description of strong turbulence.

Much important work remains to be done in the analysis of nonlinear

plasma effects. For example, except in the case of an unbounded, spa­

tially homogeneous, Vlasov plasma, the background evolution in plasmas

has still not been thoroughly investigated. In nonlinear plasma theory,
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the greatest progress has been made in the study of wave-wave interactions.

There are, however, a great many different problems to choose from, i.e.

problems which differ in the choice of plasma model, the types of waves

and order of wave interaction considered, boundary conditions, and

symmetry assumptions. Because of the large number of problems, only a

fraction of them have been studied to date. These have generally been

chosen because of their relevance to an experiment, their relative

simplicity, or their general theoretical interest.

A popular class of problems is that of three- or four-wave inter­

action processes in an infinite homogeneous plasma. rhe problems of

this class vary in the model chosen for the plasma and in the types of

waves considered. For monochromatic waves in a Vlasov plasma, a rather

comprehensive analysis of three- and four-wave interactions has been

undertaken by Suramlishvili. 52- 53 He employed the Low Lagrangian in

formulas obtained from a semi-quantum mechanical approach. The resulting

expressions for the interaction coefficients are extremely general.

Unfortunately, they are also extremely complicated, and they appear to

contain some significant errors which were noted by this author in

reference 24. For the more specialized wave interaction problems, it is

often more convenient and instructive to simplify the analysis from the

beginning, rather than to specialize complicated general results like

those of Suramlishvili. For such specialized analyses, and for the

study of the unsolved problems of nonlinear plasma theory, the averaged­

Lagrangian method promises to be an effective tool.

At the present time, the most promising plasma applications of the

averaged-Lagrangian method appear to be in the study of weak turbulence

as it related to fusion devices, and in the study of wave scattering

by density fluctuations in the ionosPhere. 92 Possible applications of

the method outside of plasma physics are particularly promising in the

fields of coherent optics and microwave acoustics. In both of these

fields, the nonlinear behavior of monochromatic waves is under active

study, and the wave-wave interaction effects appear to have practical

device applications. 5,lO
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